
Position operator Instructor’s guide

1 Operators in quantum mechanics
(In case https://paradigms.oregonstate.edu/courses/ph425 hasn’t covered this yet.) An
operator in quantum mechanics corresponds to a linear transformation of a state (or ket). In a matrix
representation, an operator would be a matrix, and would transform a column vector to another column
vector by matrix multiplication. We represent operators with hats, such as Ŝz.

Any quantity that we could observe, like the spin or position of a particle has a corresponding
Hermitian operator. The eigenvalues of the operator corresponding to an obsevables are the set of
values that could be measured when that observable is measured. For instance, the z component of
the spin Ŝz for a spin-1

2
particle has eigenvalues of ±1

2
ℏ, which is why only those two spin values are

measured.
Any operator can be written as a matrix using any basis set (of the corresponding system). The

elements of that matrix, which represents the operator, are called matrix elements, and are given by
Oij ≡ ⟨i| Ô |j⟩, where |i⟩ and |j⟩ are two basis states, Ô is some operator, and Oij is an elment of the
matrix corresponding to that operator.

2 Operators on wave functions
A wave function represents the state of a particle in space, just as a ket or an array of two elements
represents the state of a spin-1

2
particle. Just as there are operators for spins that relate to physical

observables, there are also operators for particles in space, which act on wave functions.
We will be considering just one operator this week: the position operator. The position operator in

the wave function representation is given by

x̂ =̇ x (1)

You might have some trouble understanding what this means, given that the hat and the dot are both
new notations. I’ll try to explain element by element.

x̂ This is the operator corresponding to the classical observable x. When we write an operator with a
hat like this, we are being abstract in terms of what representation we are using. Warning! We
annoyingly use the same notation for a unit vector in the x direction in Cartesian
coordinates! This is unfortunate, but context should allow you to identify the meaning
of the hat.

=̇ This means that the thing on the left (which is representation-independent) can be represented (often
in a particular basis) by the thing on the right (which is specific to that representation/basis).

x This is the representation of the position operator in the wave function representation, which we
can also call the position basis, since it is the representation in which x̂ is represented by x. In
contrast, next quarter you will learn about a momentum basis, in which x̂ =̇ iℏ ∂

∂p
.

Last week we explored how we can represent a wave function in a sinusoidal basis. Today we will explore
how to represent the position operator in the sinusoidal basis. In order to do this, we will compute what
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is called a matrix element. The matrix element is defined by

xnm = ⟨n|x̂|m⟩ (2)

=

∫
ϕ∗
n(x)xϕm(x)dx (3)

and you can think it as one of the ”elements” that shows up in a matrix.

2.1 Why is this thing a ”matrix element”?
Recall that we started by finding the average position, which was

⟨x⟩ =
∫

P(x)xdx (4)

=

∫
|ψ(x)|2xdx (5)

= ⟨ψ|x̂|ψ⟩ (6)

You then found that you could write ψ(x) as a sum of basis functions

|ψ⟩ =
∞∑
n=1

Cn|n⟩ (7)

=
∞∑
n=1

⟨n|ψ⟩|n⟩ (8)

and thus

ψ(x) =
∞∑
n=1

Cnϕn(x) (9)

We can now put these two expressions together by substituting the expressions for ψ(x) into the expres-
sion for ⟨x⟩:

⟨x⟩ =
∫
ψ(x)∗xψ(x)dx (10)

=

∫ ( ∞∑
n=1

Cnϕn(x)

)∗

x

(
∞∑
n=1

Cnϕn(x)

)
dx (11)

At this point we run into a possible confusion. I’ve written down two summations with the same
summation index. This is a natural outcom of plugging in the equation for ψ(x), but we’ve now got two
different index variables with the same name. Whenever this happens to you, it’s a good idea to change
the equation to give them different names. Since we’re summing over them, these index variables are
”dummy indexes”, just as our integral variable x is a ”dummy variable” and could be renamed at will.
We could change one of them to n′ or we could change one of them to m. I’ll pick the latter.

⟨x⟩ =
∫ ( ∞∑

n=1

Cnϕn(x)

)∗

x

(
∞∑

m=1

Cmϕm(x)

)
dx (12)
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Now that we have different dummy variables for summation, we can pull reorder our summations and
pull them out of the integral

⟨x⟩ =
∞∑
n=1

∞∑
m=1

C∗
nCm

∫
ϕn(x)

∗xϕm(x)dx (13)

=
∞∑
n=1

∞∑
m=1

C∗
nCm⟨n|x̂|m⟩ (14)

=

(
C∗

1 C∗
2 C∗

2 · · ·
)

⟨1|x̂|1⟩ ⟨1|x̂|2⟩ ⟨1|x̂|3⟩ · · ·
⟨2|x̂|1⟩ ⟨2|x̂|2⟩ ⟨2|x̂|3⟩ · · ·
⟨3|x̂|1⟩ ⟨3|x̂|2⟩ ⟨3|x̂|3⟩ · · ·

... ... ... . . .



C1

C2

C2
...

 (15)

= ⟨ψ|x̂|ψ⟩ (16)

Thus we can see that the x̂ operator does seem to be represented in our sinusoidal basis as a matrix of
infinite dimension with its elements given by xnm = ⟨n|x̂|m⟩. Thus we can also write that

x̂ =̇


⟨1|x̂|1⟩ ⟨1|x̂|2⟩ ⟨1|x̂|3⟩ · · ·
⟨2|x̂|1⟩ ⟨2|x̂|2⟩ ⟨2|x̂|3⟩ · · ·
⟨3|x̂|1⟩ ⟨3|x̂|2⟩ ⟨3|x̂|3⟩ · · ·

... ... ... . . .

 (17)

meaning that in the sinusoidal basis the x position operator is represented by this matrix.

3 Your task
1. Write a function that given n and m solves for and returns ⟨n|x̂|m⟩. Please do your integrals

numerically. (Yes, these integrals can be done analytically, but that is a bit of a pain, and this is
a computational course.)

2. Create a matrix (or 2D array) for the position operator x̂. You’ll have to choose a maximum value
of n to make this a finite matrix. Please pick something practical, but reasonably big. This is
going to require that you index your array. In python, as with most programming
languages, arrays are indexed starting with zero, so the index you will put into the
array will be one less than the value of n that you mean.

3. Visualize this matrix with a color plot. Raise your hand when you have visualized the
position operator matrix! Try increasing the number of basis functions included. Does the
matrix seem to ”converge” like your wavefunctions did last week?

Instructor’s guide This visualization can be a bit tricky. Students may be likely to use
pcolor or pcolormesh. Both will give a correct visualization, but the “diagonal” of the matrix
(which is prominently visible) will be going from lower-left to upper-right, which is not how we
write matrices. I tend to address this by asking students where the 1-1 element of the matrix
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is. In these cases, it will be in the lower-left, and once students realize that they are likely to
follow the rest.
There is another function called matshow which is designed for displaying matrices. It wouldn’t
hurt to direct students towards this. The key is to use the word “matrix” in the search, as in
searching for matplotlib plot matrix.
Another feature I would ask about is where the matrix has big and small elements. If students
omit to show a colorbar, they may not be aware of which elements are almost zero.

4 Your next task
Once you have a matrix (or 2D array) corresponding to the position operator in the sinusoidal basis,
we will want to determine the eigenstates and eigenvalues of the position operator. Those eigenstates
can be expressed in more than one representation. Because the position matrix you construct is in
the representation of our sinusoidal basis set, the eigenvectors that you obtain will also be in that
representation.

x̂|vi⟩ = λi|vi⟩ (18)
⟨1|x̂|1⟩ ⟨1|x̂|2⟩ ⟨1|x̂|3⟩ · · ·
⟨2|x̂|1⟩ ⟨2|x̂|2⟩ ⟨2|x̂|3⟩ · · ·
⟨3|x̂|1⟩ ⟨3|x̂|2⟩ ⟨3|x̂|3⟩ · · ·

... ... ... . . .



vi1
vi2
vi3
...

 = λi


vi1
vi2
vi3
...

 (19)

|vi⟩ =
∞∑
n=1

vin|n⟩ (20)

vi(x) =
∞∑
n=1

vinϕn(x) (21)

1. Solve for the eigenvalues and eigenvectors of the position matrix (numpy has a function to do this).

2. Visualize a few of the eigenfunctions of the position operator. These eigenfunctions are given by

vi(x) =
∞∑
n=1

vinϕn(x) (22)

3. On the same graph (with the eigenfunctions) visualize the corresponding eigenvalues as vertical
lines. Raise your hand when you have visualized at least a couple of eigenfunctions of
the position operator along with their corresponding eigenvalues!

Instructor’s guide There are two common errors: students will often get the indices back-
wards when indexing into the 2D array of eigenvectors (or equivalently access rows rather than
columns), which gives essentially random eigenfunctions.
The other error is to have an off-by-one error in computing the eigenfunctions, skipping an n+1,
forgetting about their n counting from zero rather than 1. This gives a peak that looks a lot
like a derivative of the correct eigenfunction.
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4. Try increasing the size of your matrix, and see how the eigenvalues and eigenfunctions change.
What do the eigenfunctions seem to be converging to?

Instructor’s guide We would like students to observe that there are in fact an infinite number
of eigenvalues of the position operator (and eigenfunctions), equally spaced between 0 and L.
Need to wrap up by discussing how these eigenstates converge (slowly), and what they converge
to.

Paper fun Solve analytically for the eigenstates of the position operator in a wave function represen-
tation. Compare them with your approximate numerical eigenstates above.
To do this, you’ll want to try picking a function, any function, and then sketch that function and
x times that function. If they look the same, you found the eigenfunction. Otherwise try again.
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