
Kinetic energy Instructor’s guide

Instructor’s guide This activity introduces finite difference approximations, follows Position op-
erator.

We have already seens several representations of the state of a particle moving in one dimension. We
looked at wave functions and representation in a set of sinusoidal basis functions. The sinusoidal basis
set had the advantage that we could use a finite amount of information to describe a smooth function
at least approximately.

Note You might think a wave function can be described with a finite amount of information, but that
is only true for a function that can be described analytically. In the general case, we have no such luck,
and require an infinite amount of information, essentially the value of the function at every possible
position x.

There is another very effective finite representation for wave functions, which you’ve actually been
using for weeks now (at least in effect), but we haven’t talked about as a representation. That is the
value of the function on a grid of regularly spaced points separated by a distance ∆x.

|ψ⟩ =̇



ψ(∆x)
ψ(2∆x)
ψ(3∆x)
ψ(4∆x)

...
ψ(L− 2∆x)
ψ(L−∆x)


(1)

This “discretized wave function” representation is what you have already been using when you create a
plot, and also for numerically integrating to find inner products.

Note: I am not including in this vector ψ(0) (or ψ(L) at the other end). This is because the
boundary condition at the edge of the box requires that the wave function have a zero value at those
two points. We could instead have chosen to include those two points, and then manually forced their
values to be zero.

1 The kinetic energy
The kinetic energy of a particle in one dimension is given by

T̂ =
p̂2

2m
= − ℏ2

2m∆x2
d2

dx2
(2)

Now this is a new beast for you, which we call a differential operator. Whenever you are confused by
an operator, it helps to operate it on something.

T̂ψ(x) = − ℏ2

2m

d2ψ

dx2

∣∣∣∣
x

(3)
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Our question for today is how we can represent this operator in our new “discretized wave function”
representation. This requires us to think about what a derivative means, and I’ll start with a first
derivative:

dψ

dx

∣∣∣∣
x

= lim
∆x→0

ψ(x+∆x/2)− ψ(x−∆x/2)

∆x
(4)

where I have used a centered difference, because it is symmetric. Now if ∆x is reasonably small, we
can just omit the limit, which is called a finite difference approximation. Now we want a second
derivative, so we need to repeat this.

d2ψ

dx2
(x) = lim

∆x→0

dψ
dx

∣∣
x+∆x/2

− dψ
dx

∣∣
x−∆x/2

∆x
(5)

≈ (ψ(x+∆x)− ψ(x))− (ψ(x)− ψ(x−∆x))

∆x2
(6)

=
ψ(x+∆x) + ψ(x−∆x)− 2ψ(x)

∆x2
(7)

So you can see that the second derivative at x is sort of a difference between the average of ψ at the
surrounding points and the value of ψ(x). We can now plug this approximation into our definition for
the kinetic energy operator to find:

T̂ψ(x) ≈ ℏ2

2m∆x2
(2ψ(x)− ψ(x+∆x)− ψ(x−∆x)) (8)

This equation is sufficient to express the kinetic energy operator as a matrix in terms of our discretized
wave function representation. I will give you the result here, and ask you to prove it in a moment:

T̂ =̇
ℏ2

2m∆x2


2 −1 0 0 · · ·
−1 2 −1 0 · · ·
0 −1 2 −1 · · ·
0 0 −1 2 · · ·
... ... ... ... . . .

 (9)


T̂ψ(∆x)

T̂ψ(2∆x)

T̂ψ(3∆x)

T̂ψ(4∆x)
...

 =
ℏ2

2m∆x2


2 −1 0 0 · · ·
−1 2 −1 0 · · ·
0 −1 2 −1 · · ·
0 0 −1 2 · · ·
... ... ... ... . . .




ψ(∆x)
ψ(2∆x)
ψ(3∆x)
ψ(4∆x)

...

 (10)

2 Tasks
1. On paper (or whiteboard) confirm by matrix multiplication that the matrix in Eq. 9 is equivalent

to the finite difference equation in Eq. 8. Raise your hand.

2. Create a 2D array (or matrix) that represents the kinetic energy operator in a discrete ”wave
function” representation (i.e. Eq. 9).
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3. Find the eigenvalues and eigenfunctions/eigenvectors of the kinetic energy operator. (use numpy)

4. Plot the 4 eigenfunctions with the lowest energy. Raise your hand.

5. Create a second plot in which you visualize the eigenvalues.

6. Make your ∆x smaller, and see how these things change.

Extra fun Construct a matrix for a harmonic potential energy operator

V̂ =
1

2
kx̂2 (11)

This will require you to make use of the fact that

x̂ |ψ⟩ =̇ xψ(x) (12)

which means that 
(∆x)ψ(∆x)
(2∆x)ψ(2∆x)
(3∆x)ψ(3∆x)
(4∆x)ψ(4∆x)

...

 =


x11 x12 x13 · · ·
x21 x22 x23 · · ·
x31 x32 x33 · · ·
... ... ... . . .



ψ(∆x)
ψ(2∆x)
ψ(3∆x)
ψ(4∆x)

...

 (13)

where x11 etc are unknowns that you must determine.
Once you have created a matrix representation for x̂ and V̂ in the discretized wavefunction repre-
sentation, solve for the eigenvectors and eigenvalues of V̂ and visualize its eigenvectors.
Then on a separate figure plot the potential V (x) and visualize the eigenvalues as horizontal lines.

Springy fun Construct a matrix for a Hamiltonian

Ĥ = T̂ + V̂ (14)

Solve for the eigenvectors and eigenvalues, and visualize a few of the lowest energy eigenvalues
and eigenvectors.
In a separate figure plot the potential V (x) and visualize the energy eigenvalues as horizontal lines.
How are your results affected by changing the spring constant k?
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