

Instructor's guide This is really just a handout.

9 Rules for Professional Typography in Physics

1. **Avoid:** $2kg$

Instead use: 2 kg

There is a space between the number and the unit (the number and the unit are separate “words”). Units are *not* italicized. This helps distinguish between 2 kg (two kilograms) and $2kg$ (2 times k times g).

2. **Avoid:** 10^{12} , or 1E12

Instead use: 10^{12}

In scientific writing, you have to use superscript. The only time for 1E12 is computer coding. The only time for 10^{12} is email programs that don't have a superscript option.

3. **Avoid:** VLED or V_{LED} or V_{LED}

Instead use: V_{LED}

In scientific writing, you have to use subscripts. The only time for V_{LED} is email programs that don't have a subscript option. Note that text such as “LED” is *not* italicized. In LaTeX you can code this as V_{LED} .

4. **Avoid:** wavelength=d*sin(theta)

Instead use: $\lambda = d \sin \theta$

Algebraic variables are italicized. There are spaces on either side of the equals sign. The sine function is *not* italic. LaTeX and Microsoft Equation Editor will manage much of this for you.

5. **Avoid:** 10 Ohm

Instead use: 10 Ω

In Microsoft Word you can use the font called “Symbol” to get Greek letters. Alternatively, LaTeX and Microsoft Equation Editor also take care of Greek letters by typing (\Omega).

6. **Avoid:** Voltage (v)

Instead use: Voltage (V)

Units are case-sensitive. The symbol for the volt unit is capital V.

7. **Avoid:** $\theta = 0.674740942$

Instead use: $\theta = 0.67$ or $\theta = 0.675$

It is unlikely your solution will require more than 1% accuracy.

8. Algebraic variables are defined in the text the first time they are used.

9. Use a consistent font size for equations and text.