
The Wire Instructor’s guide

Student handout Consider the vector field given by (µ0 and I are constants): B⃗ =
µ0I
2π

(
−y x̂+x ŷ
x2+y2

)
= µ0I

2π
ϕ̂
s

B⃗ is the magnetic field around a wire along the z-axis carrying a constant current I in the z-direction.
Ready:

• Determine B⃗ · dr⃗ on any radial line of the form y = mx, where m is a constant.

• Determine B⃗ · dr⃗ on any circle of the form x2 + y2 = a2, where a is a constant.
You may wish to express the equations for these curves in polar coordinates.

Go: For each of the following curves Ci, evaluate the line integral
∫
Ci

B⃗ · dr⃗.

• C1, the top half of the circle s = 5, traversed in a counterclockwise direction.

• C2, the top half of the circle s = 2, traversed in a counterclockwise direction.

• C3, the top half of the circle s = 2, traversed in a clockwise direction.

• C4, the bottom half of the circle s = 2, traversed in a clockwise direction.

• C5, the radial line from (2, 0) to (5, 0).

• C6, the radial line from (−5, 0) to (−2, 0).

FOOD FOR THOUGHT

• Construct closed curves C7 and C8 such that this integral
∫
Ci

B⃗ · dr⃗ is nonzero over C7 and

zero over C8.
It is enough to draw your curves; you do not need to parameterize them.

• Ampère’s Law says that, for any closed curve C, this integral is (µ0 times) the current flowing
through C (in the z direction). Can you use this fact to explain your results to part (a)?

• Is B⃗ conservative?

0.0.1 Main ideas

• Calculating (vector) line integrals.

• Use what you know!

0.0.2 Prerequisites

• Familiarity with dr⃗.
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• Familiarity with “Use what you know” strategy.

0.0.3 Warmup

This activity should be preceded by a short lecture on (vector) line integrals, which emphasizes that∫
C
F⃗ · dr⃗ represents chopping up the curve into small pieces. Integrals are sums; in this case, one is

adding up the component of B⃗ parallel to the curve times the length of each piece.

0.0.4 Props

• whiteboards and pens

0.0.5 Wrapup

Emphasize that students must express everything in terms of a single variable prior to integration.
Point out that in polar coordinates (and basis vectors)

B⃗ =
µ0I

2π

ϕ̂

s

so that using dr⃗ = ds ŝ+ r dϕ ϕ̂ quickly yields B⃗ · ddr⃗ along a circular arc (µ0I
2π

dϕ) or a radial line (0),
respectively.
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0.1 Details
0.1.1 In the Classroom

• Sketching the vector field takes some students a long time. If time is short, have them do this
before class, or consider using MATLAB or similar technology to plot the field. Still, it’s important
to plot a few vectors by hand.

• Students who have not had physics don’t know which way the current goes; they may need to be
told about the right-hand rule.

• Some students may confuse the wire with the paths of integration.

• Students working in rectangular coordinates often get lost in the algebra of Question 2b. Make
sure that nobody gets stuck here.

• Students who calculate B⃗ · dr⃗ = dy
x

on a circle need to be reminded that at the end of the day a
line integral must be expressed in terms of a single variable.

• Some students will be surprised when they calculate B⃗ · dr⃗ = 0 for radial lines. They should be
encouraged to think about the directions of B⃗ and dr⃗.

• Most students will either write everything in terms of x or y or switch to polar coordinates. We
discuss each of these in turn.

– This problem cries out for polar coordinates. Along a circular arc, s = a yields x = a cosϕ,
y = a sinϕ, so that dr⃗ = −a sinϕ dϕ x̂+ a cosϕ dϕ ŷ, from which one gets B⃗ · dr⃗ = µ0I

2π
dϕ.

– Students who fail to switch to polar coordinates can take the differential of both sides of
the equation x2 + y2 = a2, yielding x dx + y dy = 0, which can be solved for dx (or dy) and
inserted into the fundamental formula dr⃗ = dx x̂+dy ŷ. Taking the dot product then yields,
B⃗ ·dr⃗ = µ0I

2π
dy
x

. Students may get stuck here, not realizing that they need to write x in terms
of y. The resulting integral cries out for a trig substitution — which is really just switching
to polar coordinates.

In either case, sketching B⃗ should convince students that B⃗ is tangent to the circular arcs, hence
orthogonal to radial lines. Thus, along such lines, B⃗ · dr⃗ = 0; no calculation is necessary. (This
calculation is straightforward even in rectangular coordinates.)

• Watch out for folks who go from s2 = x2 + y2 to dr⃗ = 2x dx x̂+ 2y dy ŷ.

• Working in rectangular coordinates leads to an integral of the form
∫
−dx

y
, with y =

√
s2 − x2.

Maple integrates this to − tan−1
(

x
y

)
, which many students will not recognize as the polar angle

ϕ. If s = 1, Maple instead integrates this to − sin−1 x; same problem. One calculator (the TI-89?)
appears to use arcsin in both cases.

0.1.2 Subsidiary ideas

• Independence of path.
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0.1.3 Homework

• Any vector line integral for which the path is given geometrically, that is, without an explicit
parameterization.

0.1.4 Essay questions

• Discuss when
∮
B⃗ · dr⃗ around a closed curve will or will not be zero.

0.1.5 Enrichment

• This activity leads naturally into a discussion of path independence.

• Point out that B⃗ ∼ ∇ϕ everywhere (except the origin), but that B⃗ is only conservative on domains
where ϕ is single-valued.

• Discuss winding number, perhaps pointing out that B⃗ · dr̂ is proportional to dϕ along any curve.

• Discuss Ampère’s Law, which says that
∮
B⃗ ·dr⃗ is (µ0 times) the current flowing through C (in the

z direction).
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