
Phase transformations Instructor’s guide

Instructor’s guide Week 9

1 Week 9: Phase transformations
Reading: K&K 10, Schroeder 5.3

We will be ending this class by looking at phase transformations, such as the transformation from
liquid to solid, or from liquid to gas. The existence of phase transformations—which are ubiquitous in
nature—requires interactions between particles, which up to now we have neglected. Hence, we will be
reverting to a thermodynamics approach, since incorporating interactions into statistical mechanics is
not so easy.

One of the key aspects for most phase transformations is coexistence. It is posssible to have both
ice and liquid water in equilibrium with each other, coexisting happily. The existence of coexistence
in fact breaks some assumptions that we have made. For instance, starting way back in Energy and
Entropy, we have assured you that you could describe the state of a system using practically any pair
of state variables (or triple, now that we include N). However, if ice and water are coexisting, then
there must be an ambiguity, because at that temperature and pressure the system could be either ice
or water, which are different!

Missing /var/www/paradigms_media_2/media/activity_media/Phase_diagram_of_water.pdf

Figure 1: Phase diagram of water, from Wikipedia

For your online edification (probably not much in class), I include here a phase diagram of water,
which includes not only the liquid, vapor and solid phases, but also a dozen or so different crystal phases
that you can reach at some combination of high pressure or low temperature.

A phase diagram of an ordinary pure material will have two interesting points, and three interesting
lines. The two interesting points are the triple point (at which solid, liquid, and vapor can all coexist),
and the critical point, at which the distinction between liquid and vapor vanishes. The three lines rep-
resent coexistence between solid and gas (or vapor), coexistence between liquid and gas, and coexistence
between liquid and solid.

1.1 Coexistence
To understand a phase transformation, we first need to understand the state of coexistence.

Question If we view the liquid and solid here as two separate systems that are in equilibrium with
each other, what can you tell me about those two systems?

Answer They must be at the same temperature (since they can exchange energy), they must be at
the same pressure (since they can exchange volume), and least obvious they must be at the same
chemical potential, since they can exchange molecules.

The first two properties define why we can draw the coexistence as a line on a pressure-temperature
diagram, since when the two phases coexist they must have the same pressure and temperature. If we
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drew a volume-temperature diagram, the coexisting phases would not lie at the same point. The final
property, that the chemical potentials must be identical, may seem obvious in retrospect. This also
means that the Gibbs free energy per particle of the two phases must be equal (since this is equal to
the chemical potential).

1.2 Clausius-Clapeyron
When you look at the phase diagram in its usual pressure versus temperature representation, you can
now think of the lines as representing the points where two chemical potentials are equal (e.g. the
chemical potential of water and ice). A natural question would be whether you could predict the slopes
of these curves? Or alternatively, does knowing the slopes of these curves tell you anything about the
materials in question?

We can begin by considering two very close points on the liquid-vapor curve, separated by dp and
dT . We know that

µg(T, p) = µℓ(T, p) (1)
µg(T + dT, p+ dp) = µℓ(T + dT, p+ dp) (2)

We can now expand the small difference in terms of differentials

�����µg(T, p) +

(
∂µg

∂T

)
p,N

dT +

(
∂µg

∂p

)
T,N

dp

=�����µℓ(T, p) +

(
∂µℓ

∂T

)
p,N

dT +

(
∂µℓ

∂p

)
T,N

dp (3)

We can now collect the two differentials and find their ratio.((
∂µg

∂T

)
p,N

−
(
∂µℓ

∂T

)
p,N

)
dT

=

((
∂µℓ

∂p

)
T,N

−
(
∂µg

∂p

)
T,N

)
dp (4)

Thus the derivative of the coexistence curve is given by

dp

dT
=

(
∂µg

∂T

)
p,N

−
(
∂µℓ

∂T

)
p,N(

∂µℓ

∂p

)
T,N

−
(

∂µg

∂p

)
T,N

(5)

= −

(
∂µg

∂T

)
p,N

−
(
∂µℓ

∂T

)
p,N(

∂µg

∂p

)
T,N

−
(

∂µℓ

∂p

)
T,N

(6)

Small groups Find an expression for these derivatives to express this ratio in terms of thermal variables
that are more comfortable. You will want to make use of the fact we derived a few weeks ago, which
says that the chemical potential is the Gibbs free energy per particle, where G = U − TS + pV .
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Answer

G = U − TS + pV (7)
= µN (8)

dG = dU − TdS − SdT + pdV − V dp (9)
= −SdT + V dp+ µdN (10)

Ndµ = −SdT + V dp+ µdN (11)

dµ = − S

N
dT +

V

N
dp+

µ

N
dN (12)

From this differential we can see that

− S

N
=

(
∂µ

∂T

)
p,N

(13)

V

N
=

(
∂µ

∂p

)
T,N

(14)

Thus we can put these into the ratios above, and we will find thatthe Ns will cancel, and the
minus sign on the entropy will cancel the minus sign that was out front.

dp

dT
=

Sg

Ng
− Sℓ

Nℓ

Vg

Ng
− Vℓ

Nℓ

(15)

This looks like a bit of a nuisance having all these N values on the bottom. It looks cleaner if
we just define s ≡ S

N
as the specific entropy (or entropy per atom) and v ≡ V N as the specific

volume (or volume per atom). Thus we have
dp

dT
=

sg − sℓ
vg − vℓ

(16)

This is the famous Clausius-Clapeyron equation, and is true for any phase coexistence curve in
the pressure-temperature phase diagram.

We can further expand this by interpreting the chance in entropy as a latent heat. If the entropy
changes discontinuously, since the phase transformation happens entirely at a single temperature, we
can use the relationship between heat and entropy to find that

Q = TδS (17)

We call the heat needed to change from one phase to another the latent heat L, which gives us that
dp

dT
=

L

T∆V
(18)

This equation can be a bit tricky to use right, since you could get the direction of ∆V wrong. The one
with entropy and volume is easier, since as long as both changes are in the same direction (vapor minus
liquid or vice versa) it is still correct.

From Clausius-Clapeyron we can see that so long as the volume increases as the entropy also increases,
the coexistence curve will have a positive slope.
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Question When would the slope ever be negative? It requires a high-entropy phase that also has lower
volume!

Answer Ice and water! Water has higher entropy, but also has lower volume than ice (i.e. is more
dense). This is backwards from most other materials, and causes the melting curve to slope up
and to the left for ice.

1.3 van der Waals
When we talk about phase transformations, we require some sort of system in which there are interactions
between particles, since that is what leads to a phase transformation. We can either do this from the
bottom up, by constructing a system in which there are interactions and then solving for the properties
of that system, or we could use a more empirical approach, in which we use an approximate set of
equations of state (or a free energy) that behaves much like a real system.

The van der Waals fluid is sort of in between these two approaches. I will describe how we would
“derive” the van der Waals free energy in a slightly hand-waving manner, and then we will use it as an
effectively empirical system that we can use to explore how a phase transition might happen. The van
der Waals fluid in essence is a couple of corrections to the ideal gas law, which together add enough
interactions to give a plausible description of a liquid-vapor phase transition.

Small white boards What kind of interactions might exist in a real gas that are ignored when we
treat it as an ideal gas?

Answer Repulsion and attraction! ⌣̈ Atoms will have a very high energy if they sit on top of another
atom, but atoms that are at an appropriate distance will feel an attractive interaction.

In fluids, attraction and repulsion tend to be treated very differently. Repulsion tends to primarily
decrease entropy rather than increasing energy, because the atoms can simply avoid being on top of
each other. In contrast, attraction often has little effect on entropy (except when there is a phase
transformation), but can decrease the energy. It has little effect on entropy because the attraction is
often very weak, so it doesn’t (much) affect where the atoms are, but does affect the energy, provided
the atoms are close enough.

1.3.1 Building up the free energy: repulsion

Let’s start by looking at the ideal gas free energy:

Fideal = −NkT

(
ln

(
nQV

N

)
+ 1

)
(19)

This free energy depends on both volume and temperature (also N , but let’s keep that fixed). The
temperature dependence is out front and in nQ. The volume dependence is entirely in the logarithm.
When we add the repulsive interaction, we can wave our hands a bit and argue that the effect of repulsion
is to keep atoms from sitting too close to one another, and that results in each atom having less volume
it could be placed in. The volume available for a given atom will be the total volume V , minus the
volume occupied by all the other atoms, which we can call Nb where N is the number of atoms, and
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b is the excluded volume per atom. You might argue (correctly) that the excluded volume should be
(N − 1)b, but we will be working in the limit of N ≫ 1 and can ignore that fine distinction. Making
this substitution gives us

Fwith repulsion = −NkT

(
ln

(
nQ(V −Nb)

N

)
+ 1

)
(20)

This free energy is going to be higher than the ideal gas free energy, because we are making the logarithm
lesser, but there is a minus sign out front. That is good, because we would hardly expect including
repulsion to lower the free energy.

In your homework you will (incidentally) show that this free energy gives an internal energy that is
identical to the ideal gas free energy, which bears out what I said earlier about repulsion affecting the
entropy rather than the energy.

1.3.2 Adding attraction: mean field theory

When we want to add in attraction to the free energy, the approach we will use is called mean field
theory. I prefer to talk about it as first-order thermodynamic perturbation theory. (Actually,
mean field theory is often more accurately described as a poor approximation to first-order perturbation
theory, as it is common in mean-field theory to ignore any correlations in the reference fluid.) You know
perturbation theory from quantum mechanics, but the fundamental ideas can be applied to any theory,
including statistical mechanics.

The fundamental idea of perturbation theory is to break your Hamiltonian into two terms: one that
you are able to solve, and a second term that is small. In this case, in order to derive (or motivate?) the
van der Waals equation, our reference would be the system with repulsion only, and the perturbation
would be the attraction between our atoms. We want to solve this purely classically, since we don’t
know how to solve the energy eigenvalue equation with interactions between particles included.

Classically, we would begin by writing down energy, and then we would work out the partition
function by summing over all possible microstates in the canonical ensemble. A logarithm would then
tell us the free energy. The energy will be

E =
all atoms∑

i

p2i
2m

+
1

2

atom pairs∑
ij

U(|r⃗i − r⃗j|) (21)

where U(r) is an attractive pair potential, which is to say, a potential energy of interaction between
each pair of atoms. The first term is the kinetic energy (and is the same for the ideal gas), while the
second term is a potential energy (and is zero for the ideal gas). The partition function is then

Z =
1

N !

∫
d3r1

∫
d3r2 · · ·

∫
d3rN∫

d3p1

∫
d3p2 · · ·

∫
d3pNe

−β

(∑ p2i
2m

+ 1
2

∑
U(|r⃗i−r⃗j |)

)
(22)

=
1

N !

∫
d3p1

∫
d3p2 · · ·

∫
d3pNe

−β

(∑ p2i
2m

)
∫
d3r1

∫
d3r2 · · ·

∫
d3rNe

−β( 1
2

∑
U(|r⃗i−r⃗j |)) (23)
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At this point I will go ahead and split this partition function into two factors, an ideal gas partition
function plus a correction factor that depends on the potential energy of interaction.

Z =
V N

N !

∫
d3p1

∫
d3p2 · · ·

∫
d3pNe

−β

(∑ p2i
2m

)

1

V N

∫
d3r1

∫
d3r2 · · ·

∫
d3rNe

−β( 1
2

∑
U(|r⃗i−r⃗j |)) (24)

= Zideal
1

V N

∫
d3r1 · · ·

∫
d3rNe

−β( 1
2

∑
U(|r⃗i−r⃗j |)) (25)

= ZidealZconfigurational (26)

Now we can express the free energy!

F = −kT lnZ (27)
= −kT ln(ZidealZconfigurational) (28)
= Fideal − kT lnZconfigurational (29)

So we just need to approximate this excess free energy (beyond the ideal gas free energy). Let’s get to
the approximation bit.

Zconfig =

∫
d3r1
V

· · ·
∫
d3rN
V

e−β( 1
2

∑
U(|r⃗i−r⃗j |)) (30)

≈
∫
d3r1
V

· · ·
∫
d3rN
V

(
1−

∑
ij

β

2
U(rij)

)
(31)

At this point I have used a power series approximation on the exponentials, under the assumption that
our attraction is sufficiently small. Now we can write this sum in a simpler manner, taking account of
the symmetry between the different particles.

Zconfig = 1− β

2

∑
ij

∫
d3r1
V

· · ·
∫
d3rN
V

U(rij) (32)

= 1− βN2

2

∫
d3r1
V

∫
d3r2
V

U(r12) (33)

= 1− βN2

2

∫
d3r

V
U(r) (34)

At this stage, I’ve gotten things way simpler. Note also, that I did something wrong. I assumed that
the potential was always small, but the repulsive part of the potential is not small. But we’ll ignore
that for now. Including it properly would be doing this right, but instead we’ll use the approach that
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leads to the van der Waals equation of state. To continue…

Fexcess = −kT lnZconf (35)

= −kT ln

(
1− βN2

2

∫
d3r

V
U(r)

)
(36)

≈ kT
βN2

2

∫
d3r

V
U(r) (37)

=
N2

2

∫
d3r

V
U(r) (38)

≡ −N2

V
a (39)

where I’ve defined a ≡ −1
2

∫
d3rU(r). The minus sign here is to make a a positive quantity, given that

U(r) < 0. Putting this together with the ideal gas free energy modified to include a simple repulsion
term, we have the van der Waals free energy:

FvdW = −NkT

(
ln

(
nQ(V −Nb)

N

)
+ 1

)
− N2

V
a (40)

1.3.3 van der Waals equation of state

Small groups Solve for the van der Waals pressure, as a function of N , V , and T (and of course, also
a and b).

Answer

p = −
(
∂F

∂V

)
T,N

(41)

=
NkT

V −Nb
− N2

V 2
a (42)

This equation is the van der Waals equation of state, which is often rewritten to look like:(
p+

N2

V 2
a

)
(V −Nb) = NkT (43)

as you can see it is only slightly modified from the ideal gas law, provided a ≪ p and Nb ≪ V .

1.4 van der Waals and liquid-vapor phase transition
Let’s start by looking at the pressure as a function of volume according to the van der Waals equation:

p =
NkT

V −Nb
− N2

V 2
a (44)

=
kT

V
N
− b

− N2

V 2
a (45)
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Clearly the pressure will diverge as the volume is decreased towards Nb, which puts a lower bound on
the volume. This reflects the fact that each atom takes b volume, so you can’t compress the fluid smaller
than that. At larger volumes, the pressure will definitely be positive and decreasing, since the attractive
term dies off faster than the first term. However, if a is sufficiently large (or T is sufficiently small), we
may find that the second term dominates when the volume is not too large.

We can also rewrite this pressure to express it in terms of the number density n ≡ N
V

, which I find
a little more intuitive than imagining the volume changing:

p =
kT

1
n
− b

− n2a (46)

= kT
n

1− nb
− n2a (47)

So this tells us that as we increase the density from zero, the pressure will begin by increasing linearly.
It will end by approaching infinity as the density approaches 1

b
. In between, the attractive term may or

may not cause the pressure to do something interesting.

Missing /var/www/paradigms_media_2/media/activity_media/vdw-pressure.pdf

Figure 2: The van der Waals pressure for a few temperatures.

This equation is kind of nice, but it’s still pretty confusing because it has three different constants
(other than n) in it. We can reduce that further by rewriting it in terms of the packing fraction η ≡ nb,
which is the fraction of the volume that is filled with atoms.

p =
kT

b

η

1− η
− a

b2
η2 (48)

We now see that there are just two “constants” to deal with, kT
b

, and a
b2

each of which have dimensions
of pressure. The former, of course, depends on temperature, and the ratio between them (i.e. kTb

a
) will

fully determine the shape of our pressure curve (in terms of density).

Missing /var/www/paradigms_media_2/media/activity_media/vdw-pressure-volume.pdf

Figure 3: The van der Waals pressure for a few temperatures.

Clearly something interesting is happening at low temperatures. This is a phase transition. But
how do we find out what the density (or equivalently, volume) of the liquid and solid are? You already
know that the pressure, temperature and chemical potential must all be equal when two phases are in
coexistence. From this plot we can identify triples of densities where the temperature and pressure are
both identical. Which corresponds to the actual phase transition?

Question How might you determine from this van der Waals equation of state or free energy where
the phase transformation happens?

Answer As before, we need to have identical pressure, temperature and chemical potential. So we need
to check which of these equal pressure states have the same chemical potential.
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1.4.1 Common tangent

Most approaches require us to work with the Helmholtz free energy rather than the pressure equation.
If we plot the Helmholtz free energy versus volume (with number fixed) the pressure is the negative
slope. We also need to ensure that the chemical potential (or Gibbs free energy) is identical at the two
points.

Missing /var/www/paradigms_media_2/media/activity_media/vdw-free-volume.pdf

Figure 4: The van der Waals free energy.

G = F + pV (49)

= F −
(
∂F

∂V

)
N,T

V (50)

So let us set the Gibbs free energies and pressures equal for two points:
p1 = p2 (51)

−
(
∂F

∂V

)
N,T

= same for each (52)

G1 = G2 (53)
F1 + pV1 = F2 + pV2 (54)
F1 − F2 = p (V2 − V1) (55)

So for two points to have the same Gibbs free energy, their Helmholtz free energy (at fixed temperature)
must pass through a line with slope equal to the negative of the pressure. If those two points also have
that pressure as their (negative) slope, then they have both equal slope and equal chemical potential,
and are our two coexisting states. This is the common tangent construction.

The common tangent construction is very commonly used when looking at multiple crystal structures,
when you don’t even know which ones are stable in the first place.

Note The common tangent construction also works when we plot F versus n or N .

1.4.2 Gibbs free energy

Another approach to solve for coexistence points is to plot the Gibbs free energy versus pressure, each
of which can be computed easily from the Helmholtz free energy. When we plot the Gibbs free energy
versus pressure, we find that there is a crossing and a little loop. This loop corresponds to metastable
and unstable states, and the crossing point is where the two phases (liquid and vapor, in our case)
coexist.

Missing /var/www/paradigms_media_2/media/activity_media/vdw-gibbs.pdf

Figure 5: The van der Waals Gibbs free energy.

As we increase the temperature, we will find that this little loop becomes smaller, as the liquid and
vapor densities get closer and closer. The critical point is where it disappears.
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Why does G look like this? We had a good question about what the “points” represent in the Gibbs
free energy curve. We can understand this a bit better by thinking a bit about the differential of
G:

dG = −SdT + V dp (56)

This tells us that the slope of the G versus p curve (at fixed temperature) is just the volume of
the system. Since the volume can vary continuously (at least in the Helmholtz free energy we
constructed), this slope must continuously change as we follow the path. That explains why we
have pointy points, since the slope must be the same on both sides of the curve. The points thus
represent the states where the pressure has an extremum, as we change the volume. In between
those two extrema is the range where increasing volume causes the pressure to increase. These
states are mechanically unstable, and thus cannot be observed.

1.5 Examples of phase transitions
I’d like to spend just a bit of time talking about the wide variety of different phase transitions that can
and do happen, before we discuss how these transitions can be understood in a reasonably unified way
through Landau theory.

Liquid-vapor The liquid-vapor transition is what we just discussed. The only fundamental difference
between liquid and vapor is the density of the fluid. (abrupt)

Melting/freezing Melting and freezing is similar to the liquid-vapor transition, with the difference
however, that there cannot be a critical point, since we cannot go from solid to liquid without a phase
transition. (abrupt)

Sublimation Sublimation is very much like melting. Its major difference happens because of the
difference between a gas and a liquid, which means that there is no temperature low enough that there
will not be a gas in equilibirum with a solid at low pressure. (abrupt)

Solid/solid Solid-solid phase transitions are interesting in that different solid phases have different
crystal symmetries which make it both possible and reasonable to compute (and possibly even observe)
properties for different phases at the same density and pressure. (abrupt)

Ferromagnetism A ferromagnetic material (such as iron or nickel) will spontaneously magnetize
itself, although the magnetized regions do break into domains. When the material is heated above a
given temperature (called the Curie temperature) it is no longer ferromagnetic, but instead behaves as
an ordinary paramagnetic material. This is therefore a phase transitions. (continuous)

Ferroelectrics A ferroelectric material is a material that has a spontaneous electric dipole polarization
at low temperatures. It behaves very much like an electrical analogue of a ferromagnetic material.
(continuous)
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Antiferromagnetism An antiferromagnetic material (such as nickel oxide) will have different atoms
with oppositely polarized spin. This is less easy to observe by elementary school children than ferro-
magnetism, but is also a distinct phase, with a phase transition in which the spins become disordered.
(continuous)

Superconductivity A superconductor at low temperatures has zero electrical resistivity. At higher
temperature it is (for ordinary superconductors) an ordinary metal. Lead is a classic example of a
superconductor, and has a transition temperature of 7.19K. You see high-Tc superconductors in demos
more frequently, which have transition temperatures up to 134K, but are more complicated in terms of
their cause and phase diagram. (continuous)

Superfluidity A superfluid (and helium 4 is the classic example) has zero viscosity at low tempera-
tures. For helium this transition temperature is 2.17K. (continuous)

Bose-Einstein condensation The transition to having a macroscopic occupation in the ground state
in a gas of bosons is another phase transition. (continuous)

Mixing of binary systems In binary systems (e.g. salt and water, or an alloy of nickel and iron)
there are many of the same phase transitions (e.g. liquid/gas/solid), but now we have an additional
parameter which is the fraction of each component in the phase. Kittel and Kroemer have a whole
chapter on this kind of phase transition.

1.6 Landau theory
There are so many kinds of phase transitions, you might wonder whether they are all different, or if we
can understand them in the same (or a similar) way. Landau came up with an approach that allows us
to view the whole wide variety of phase transitions in a unified manner.

The key idea is to identify an order parameter ξ, which allows us to distinguish the two phases.
This order parameter ideally should also be something that has interactions we can control through
some sort of an external field. Examples of order parameters:

Liquid-vapor volume or density

Ferromagnetism magnetization

Ferroelectrics electric polarization density

Superconductivity or superfluidity quantum mechanical amplitude (including phase)

Binary mixtures fraction of components

The key idea of Landau is to express a Helmholtz free energy as a function of the order parameter:

FL(ξ, T ) = U(ξ, T )− TS(ξ, T ) (57)
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Now at a given temperature there is an equilibrium value for the order parameter ξ0, which is determined
by minimizing the free energy, and this equilibrium order parameter defines the actual Helmholtz free
energy.

F (T ) = FL(ξ0, T ) ≤ FL(ξ, T ) (58)

So far this hasn’t given us much. Landau theory becomes powerful is when we expand the free energy
as a power series in the order parameter (and later as a power series in temperature).

1.6.1 A continuous phase transition

To make things concrete, let us assume an order parameter with inversion symmetry, such as magne-
tization or electrical polarization. This means that FL must be an even function of ξ, so we can write
that

FL(ξ, T ) = g0(T ) +
1

2
g2(T )ξ

2 +
1

4
g4(T )ξ

4 + · · · (59)

The entire temperature dependence is now hidden in the coefficients of the power series. A simple
example where we could have a phase transition, would be if the sign of g2 changed at some temperature
T0. In this case, we could do a power series expansion of our coefficients around T0, and we would have
something like:

FL(ξ, T ) = g0(T ) +
1

2
α(T − T0)ξ

2 +
1

4
g4(T0)ξ

4 (60)

where I am ignoring the temperature dependence of g4, under the assumption that it doesn’t do anything
too fancy near T0. I’m leaving g0(T ) alone, because it causes no trouble, and will be useful later. I’m
also going to assume that α and g4(T0) are positive. Now we can solve for the order parameter that
minimizes the free energy by setting its derivative to zero.(

∂FL

∂ξ

)
T

= 0 (61)

= α(T − T0)ξ + g4(T0)ξ
3 (62)

This has two solutions:

ξ = 0 ξ2 = (T0 − T )
α

g4(T0)
(63)

If T > T0 there is only one (real) solution, which is that the order parameter is zero. Thus when T > T0,
we can see that

F (T ) = g0(T ) (64)

exactly, since ξ = 0 causes all the other terms in the Landau free energy to vanish.
In contrast, when T < T0, there are two solutions that are minima (±

√
(T0 − T )α/g4(T0)), and one

maximum at ξ = 0. In this case the order parameter continuously (but not smoothly) goes to zero. This
tells us that the free energy at low temperatures will be given by

F (T ) = g0(T )−
α2

4g4(T0)
(T − T0)

2 (65)

12



Phase transformations Instructor’s guide

Small groups Solve for the entropy of this system when the temperature is near T0.

Answer We can find the entropy from the free energy by considering its total differential

dF = −SdT − pdV (66)

which tells us that

−S =

(
∂F

∂T

)
V

(67)

Let’s start by finding the entropy for T < T0:

S< = −dg0
dT

− α2

2g4(T0)
(T0 − T ) (68)

When the temperature is high, this is easier:

S< = −dg0
dT

(69)

This tells us that the low-temperature phase has an extra-low entropy relative to what it would
have had without the phase transition. However, the entropy is continuous, which means that
there is no latent heat associated with this phase transition, which is called a continuous phase
transition. An older name for this kind of phase transition (used in the text) is a second order
phase transition. Currently “continuous” is prefered for describing phase transitions with no
latent heat, because they are not always actually second order as is this example.

Examples of continuous phase transitions include ferromagnets and superconductors.

1.6.2 An abrupt phase transition

To get an abrupt phase transition with a nonzero latent heat (as for melting or boiling), we need
to consider a scenario where g4 < 0 and g6 > 0. This gives us two competing local minima at different
values for the order parameter. (Note that an abrupt phase transition is also known as a first order
phase transition.)

FL = g0(T ) +
1

2
α(T − T0)ξ

2 − 1

4
|g4(T )|ξ4 +

1

6
g6ξ

6 + · · · (70)

Small groups if we have time Find the solutions for the order parameter, and in particular find a
criterion for the phase transition to happen.

Answer We want to find minima of our free energy…

∂FL

∂ξ
= 0 (71)

= α(T − T0)ξ − |g4(T )|ξ3 + g6ξ
5 (72)
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One solution is ξ = 0. Otherwise,

0 = α(T − T0)− |g4(T )|ξ2 + g6ξ
4 (73)

which is just a quadratic. It has solutions when

ξ2 =
|g4(T )| ±

√
g4(T )2 − 4g6α(T − T0)

2g6
(74)

Note that this has four solutions. Two have ξ < 0, and show up because our free energy is even.
One of the other solutions is a local maximum, and the final solution is a local minimum. For this
to have a real solution, we would need for the thing in the square root to be positive, which means

g4(T )
2 ≥ 4g6α(T − T0) (75)

It would be tempting to take this as an equality when we are at the phase transition. However,
that is just the point at which there is a local minimum, but we are looking for a global minimum
(other than ξ = 0). This global minimum will require that

FL(ξ > 0) < FL(ξ = 0) (76)

which leads us to conclude that
1

2
α(T − T0)ξ

2 − 1

4
|g4(T )|ξ4 +

1

6
g6ξ

6 < 0 (77)

We can plug in the criterion for an extremum in the free energy at nonzero ξ to find:

1
2

(
|g4(T )|ξ2 − g6ξ

4
)
ξ2 − 1

4
|g4(T )|ξ4 + 1

6
g6ξ

6 < 0 (78)
1
4
|g4(T )|ξ4 − 1

3
g6ξ

6 < 0 (79)
1

4
|g4(T )| −

1

3
g6ξ

2 < 0 (80)

At this point we would want to make use of the solution for ξ2 above that used the quadratic
equation. We would then have eliminated ξ from the equation, and could solve for a relationship
between |g4(T )|, g6, and α(T − T0).
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