

1 Rubber Sheet

Consider a hanging rectangular rubber sheet. We will consider there to be two ways to get energy into or out of this sheet: you can either stretch it vertically or horizontally. The vertical dimension of the rubber sheet we will call y , and the horizontal dimension of the rubber sheet we will call x . We can use these two independent variables to specify the "state" of the rubber sheet. Similar to the partial derivative machine, we could choose any pair of variables from the set $\{x, y, F_x, F_y\}$ to specify the state of the rubber sheet.

If I pull the bottom down by a small distance Δy , with no horizontal force, what is the resulting change in width Δx ? Express your answer in terms of partial derivatives of the potential energy $U(x, y)$.