

The Magnetic Vector Potential Due to a Spinning Ring of Charge

1. Use the superposition principle for the magnetic vector potential due to a continuous current distribution:

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}'(\vec{r}')}{|\vec{r} - \vec{r}'|} d\tau', \quad (1)$$

to find the magnetic vector potential everywhere in space due to a spinning charged ring with radius R , total charge Q , and period T .

2. Evaluate your expression for the special case that \vec{r} is on the z -axis.
3. Evaluate your expression for the special case that \vec{r} is on the x -axis.
4. Find a series expansion for the electrostatic potential at these special locations:
 - a) Near the center of the ring, in the plane of the ring;
 - b) Near the center of the ring, on the axis of the ring;
 - c) Far from the ring on the axis of symmetry;
 - d) Far from the ring, in the plane of the ring.