

Consider the vector field given by (μ_0 and I are constants): $\vec{B} = \frac{\mu_0 I}{2\pi} \begin{pmatrix} -y\hat{x} + x\hat{y} \\ x^2 + y^2 \end{pmatrix} = \frac{\mu_0 I}{2\pi} \frac{\hat{\phi}}{s}$
 \vec{B} is the magnetic field around a wire along the z -axis carrying a constant current I in the z -direction.
Ready:

- Determine $\vec{B} \cdot d\vec{r}$ on any radial line of the form $y = mx$, where m is a constant.
- Determine $\vec{B} \cdot d\vec{r}$ on any circle of the form $x^2 + y^2 = a^2$, where a is a constant.
You may wish to express the equations for these curves in polar coordinates.

Go: For each of the following curves C_i , evaluate the line integral $\int_{C_i} \vec{B} \cdot d\vec{r}$.

- C_1 , the *top* half of the circle $s = 5$, traversed in a *counterclockwise* direction.
- C_2 , the *top* half of the circle $s = 2$, traversed in a *counterclockwise* direction.
- C_3 , the *top* half of the circle $s = 2$, traversed in a *clockwise* direction.
- C_4 , the *bottom* half of the circle $s = 2$, traversed in a *clockwise* direction.
- C_5 , the radial line from $(2, 0)$ to $(5, 0)$.
- C_6 , the radial line from $(-5, 0)$ to $(-2, 0)$.

FOOD FOR THOUGHT

- Construct **closed** curves C_7 and C_8 such that this integral $\int_{C_i} \vec{B} \cdot d\vec{r}$ is nonzero over C_7 and zero over C_8 .
*It is enough to draw your curves; you do **not** need to parameterize them.*
- Ampère's Law says that, for any closed curve C , this integral is (μ_0 times) the current flowing **through** C (in the z direction). Can you use this fact to explain your results to part (a)?
- Is \vec{B} conservative?