

Missing /var/www/paradigms_media_2/media/activity_media/rectangle.png

1. Consider the rectangle in the first quadrant of the xy -plane as in the figure with thick black lines.
 - Label the bottom horizontal edge of the rectangle $y = c$.
 - Label the sides of the rectangle Δx and Δy .
 - What is the area of the rectangle?
 - There are also 2 rectangles whose base is the x -axis, the larger of which contains both the smaller and the original rectangle. Express the area of the original rectangle as the difference between the areas of these 2 rectangles.
2. On the grid below, draw any simple, closed, piecewise smooth curve C , all of whose segments C_i are parallel either to the x -axis or to the y -axis. Your curve should **not** be a rectangle. Pick an origin and label it, and assume that each square is a unit square.

Missing /var/www/paradigms_media_2/media/activity_media/grid.png

- Compute the area of the region D inside C by counting the number of squares inside C .
 - Evaluate the line integral $\oint_C y \hat{\mathbf{x}} \cdot d\vec{r}$ by noticing that along each segment either x or y is constant, so that the integral is equal to $\sum_{C_i} y \Delta x$.

Can you relate this to Problem 1?
-
- Are your answers to the preceding two calculations the same?
 - Would any of your answers change if you replaced $y \hat{\mathbf{x}}$ by $x \hat{\mathbf{y}}$ in part (b)?