
Chemical potential and Gibbs distribution Handout

1 Week 5: Chemical potential and Gibbs distribution
Reading: K&K 9, Schroeder 7.1

This week be looking at scenarios where the number of particles in a system changes. We could
technically always manage to solve problems without doing such a system, but allowing N to change is
often a lot easier, just as letting the energy change made things easier. In both case, we enable ourselves
to consider a smaller system, which tends to be both conceptually and mathematically simpler.

Small white boards (3 minutes) Talk with your neighbor for a moment about how you expect the
density of the atmosphere to vary with altitude.

1.0.1 The atmosphere

Let’s talk about the atmosphere for a moment. Each atmosphere has a potential energy. We can solve
this problem using the canonical ensemble as we have learned. We will consider just one atom, but now
with gravitational potential energy as well as kinetic energy. This time around we’ll do this classically
rather than quantum mechanically. We can work out the probability of this atom having any particular
momentum and position.

P1(p⃗, r⃗) =
e
−β

(
p2

2m
+mgz

)
Z1

(1)

=
e−β p2

2m
−βmgz

Z1

(2)

This tells us that the probability of this atom being at any height drops exponentially with height. If
we extend this to many atoms, clearly the density must drop exponentially with height. Thiw week
we’ll be looking at easier approaches to explain this sort of phenomenon. You can see the obvious fact
that that potential energy will affect density, and hence pressure. We will be generalizing the idea of
potential energy into what is called chemical potential.

1.1 Chemical potential
Imagine for a moment what happens if you allow just two systems to exchange particles as well as
energy. Clearly they will exchange particles for a while, and then things will settle down. If we hold
them at fixed temperature, their combined Helmholtz free energy will be maximized. This means that
the derivative of the Helmholtz free energy with respect to N must be equal on both sides. This defines
the chemical potential.

µ =

(
∂F

∂N

)
T,V

(3)

This expands our total differential of the free energy

dF = −SdT − pdV + µdN (4)
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which also expands our understanding of the thermodynamic identity
dU = TdS − pdV + µdN (5)

which tells us that the chemical potential is also

µ =

(
∂U

∂N

)
S,V

(6)

The chemical potential expands our set of thermodynamic variables, and allows all sorts of nice excite-
ment. Specifically, we now have three extensive variables that the internal energy depends on, as well
as their derivatives, the temperature, pressure, and chemical potential.
Note In general, there is one chemical potential for each kind of particle, thus the word “chemical” in

chemical potential. Thus the “three” I discuss is actually a bit flexible.

1.1.1 Internal and external

The chemical potential is in fact very much like potential energy. We can distinguish between external
chemical potential, which is basically ordinary potential energy, and internal chemical potential,
which is the chemical potential that we compute as a property of a material. We’ll do a fair amount
of computing of the internal chemical potential this week, but keep in mind that the total chemical
potential is what becomes equal in systems that are in equilibrium. The total chemical potential at the
top of the atmosphere, is equal to the chemical potential at the bottom. If it were not, then atoms
would diffuse from one place to the other.

1.1.2 Ideal gas chemical potential

Recall the Helmholtz free energy of an ideal gas is given by
F = NF1 + kBT lnN ! (7)

= −NkBT ln

(
V

(
mkBT

2πℏ2

) 3
2

)
+ kBTN(lnN − 1) (8)

= −NkBT ln (V nQ) + kBTN(lnN − 1) (9)

= NkT ln

(
N

V

1

nQ

)
−NkT (10)

Small groups Find the chemical potential of the ideal gas.

Answer To find the chemical potential, we just need to take a derivative.

µ =

(
∂F

∂N

)
V,T

(11)

= kBT ln

(
N

V

1

nQ

)
(12)

= kBT ln

(
n

nQ

)
(13)

where the number density n is given by n ≡ N/V .
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This equation can be solved to find the density in terms of the chemical potential:

n = nQe
βµ (14)

This might remind you of the Boltzmann relation. In fact, it’s very closely related to the Boltzmann
relation. We do want to keep in mind that the µ above is the internal chemical potential.

The total chemical potential is given by the sum of the internal chemical potential and the external
chemical potential, and that total is what is equalized between systems that are in diffusive contact.

µtot = µint +mgz (15)

= kBT ln

(
n

nQ

)
+mgz (16)

We can solve for the density now, as a function of position.

kBT ln

(
n

nQ

)
= µtot −mgz (17)

n = nQe
−β(µtot−mgz) (18)

This is just telling us the same result we already knew, which is that the density must drop exponentially
with height.

1.1.3 Interpreting the chemical potential

The chemical potential can be challenging to understand intuitively, for myself as well as for you. The
ideal gas expression

n = nQe
βµ (19)

can help with this. This tells us that the density increases as we increase the chemical potential. Particles
spontaneously flow from high chemical potential to low chemical potential, just like heat flows from high
temperature to low. This fits with the idea that at high µ the density is high, since I expect particles
to naturally flow from a high density region to a low density region.

The distinction between internal and external chemical potential allows us to reason about systems
like the atmosphere. Where the external chemical potential is high (at high altitude), the internal
chemical potential must be lower, and there is lower density. This is because particles have already fled
the high-µ region to happier locations closer to the Earth.

1.2 Gibbs factor and sum
Let’s consider how we maximize entropy when we allow not just microstates with different energy, but
also microstates with different number of particles. The problem is the same was we dealt with the first
week. We want to maximize the entropy, but need to fix the total probability, the average energy and
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now the average number.

⟨N⟩ = N =
∑
i

PiNi (20)

⟨E⟩ = U =
∑
i

PiEi (21)

1 =
∑
i

Pi (22)

To solve for the probability Pi we will want to maximize the entropy S = −k
∑

i Pi lnPi subject to the
above constraints. Like what I did the first week of class, we will need to use Lagrange multipliers.

The Lagrangian which we want to maximize will look like

L = −k
∑
i

Pi lnPi + kα

(
1−

∑
i

Pi

)

+ kβ

(
U −

∑
i

PiEi

)

+ kγ

(
N −

∑
i

PiNi

)
(23)

Small groups Solve for the probabilities Pi that maximize this Lagrangian, subject to the above con-
straints. Eliminate α from the expression for probability, so you will end up with probabilities
that depend on the other two Lagrange multipliers, one of which is our usual β, while the other
one we will relate to chemical potential.

Answer We maximize L by setting its derivatives equal to zero.

0 = −1

k

∂L
∂Pi

(24)

= lnPi + 1 + α + βEi + γNi (25)
Pi = e−1−α−βEi−γNi (26)

Now as before we’ll want to apply the normalization constraint.

1 =
∑
i

Pi (27)

=
∑
i

e−1−α−βEi−γNi (28)

= e−1−α
∑
i

e−βEi−γNi (29)

e−1−α =
1∑

i e
−βEi−γNi

(30)
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Thus we find that the probability of a given microstate is

Pi =
e−βEi−γNi

Z
(31)

Z ≡
∑
i

e−βEi−γNi (32)

where we will call the new quantity Z the grand partition function or Gibbs sum.

We have already identified β as 1
kT

, but what is this γ? It is a dimensionless quantity. We expect
that γ will relate to a derivative of the entropy with respect to N (since it is the Lagrange multiplier for
the N constraint). We can figure this out by examining the newly expanded total differential of entropy:

dU = TdS − pdV + µdN (33)

dS =
1

T
dU +

p

T
dV − µ

T
dN (34)

Small groups I’d like you to repeat your first ever homework problem in this class, but now with
the N -changing twist. Given the above set of probabilities, along with the Gibbs entropy S =
−k
∑

P lnP , find the total differential of entropy in terms of dU and dN , keeping in mind that
V is inherently held fixed by holding the energy eigenvalues fixed. Equate this total differential
to the dS above to identify β and γ with thermodynamic quantities.

Answer

S = −k
∑
i

Pi lnPi (35)

= −k
∑
i

Pi ln

(
e−βEi−γNi

Z

)
(36)

= −k
∑
i

Pi(−βEi − γNi − lnZ) (37)

= kβU + kγN + k lnZ (38)

Now we can zap this with d to find its derivatives:

dS = kβdU + kUdβ + kγdN + kNdγ + k
dZ
Z

(39)

Now we just need to find dZ…

dZ =
∂Z
∂β

dβ +
∂Z
∂γ

dγ (40)

= −
∑
i

Eie
−βEi−γNidβ −

∑
i

Nie
−βEi−γNidN (41)

= −UZdβ −NZdγ (42)
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Putting dS together gives

dS = kβdU + kγdN (43)

=
1

T
dU − µ

T
dN (44)

Thus, we conclude that

kβ =
1

T
kγ = −µ

T
(45)

β =
1

kT
γ = −βµ (46)

1.2.1 Actual Gibbs sum (or grand sum)

Putting this interpretation for γ into our probabilities we find the Gibbs factor and Gibbs sum (or
grand sum or grand partition function) to be:

Pj =
−β (Ej − µNj)

Z
(47)

Z ≡
∑
i

e−β(Ei−µNi) (48)

where you must keep in mind that the sums are over all microstates (including states with different N).
We can go back to our expressions for internal energy and number

U =
∑
i

PiEi (49)

=
1

Z
∑
i

Eie
−β(Ei−µNi) (50)

N =
∑
i

PiNi (51)

=
1

Z
∑
i

Nie
−β(Ei−µNi) (52)

We can now use the derivative trick to relate U and N to the Gibbs sum Z, should we so desire.

Small groups Work out the partial derivative tricks to compute U and N from the grand sum.

Answer Let’s start by exploring the derivative with respect to β, which worked so nicely with the
partition function.

1

Z
∂Z
∂β

= − 1

Z
∑
i

(Ei − µNi)e
−β(Ei−µNi) (53)

= −U + µN (54)

6



Chemical potential and Gibbs distribution Handout

Now let’s examine a derivative with respect to µ.

1

Z
∂Z
∂µ

=
1

Z
∑
i

(βNi)e
−β(Ei−µNi) (55)

= βN (56)

Arranging these to find N and U is not hard.

Small groups Show that (
∂N

∂µ

)
T,V

> 0 (57)

Answer

N =
∑
i

NiPi (58)

= kT
1

Z

(
∂Z
∂µ

)
β

(59)

So the derivative we seek will be(
∂N

∂µ

)
T,V

= kT

(
∂2Z
∂µ2

)
β

(60)

=
∑
i

Ni

(
∂Pi

∂µ

)
β

(61)

=
∑
i

Ni

(
βNiPi −

Pi

Z

(
∂Z
∂µ

)
β

)
(62)

=
∑
i

Ni (βNiPi − β⟨N⟩Pi) (63)

We can simplify this the notation by expressing things in terms of averages, since we’ve got sums
of Pi times something.

= β ⟨Ni(Ni − ⟨N⟩)⟩ (64)
= β

(⟨
N2
⟩
− ⟨N⟩2

)
(65)

= β
⟨
(N − ⟨N⟩)2

⟩
(66)

This is positive, because it is an average of something squared. The last step is a common step
when examining variances of distributions, and relies on the fact that ⟨N − ⟨N⟩⟩ = 0.
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1.2.2 Euler’s homogeneous function theorem

There is a nice theorem we can use to better understand the chemical potential, and how it relates to
the Gibbs free energy. This involves reasoning about how internal energy changes when all the extensive
variables are changed simultaneously, and connects with Euler’s homogeneous function theorem.

Suppose we have a glass that we will slowly pour water into. We will define our “system” to be all
the water in the glass. The glass is open, so the pressure remains constant. Since the water is at room
temperature (and let’s just say the room humidity is 100%, to avoid thinking about evaporation), the
temperature remains constant as well.

Small white boards What is the initial internal energy (and entropy and volume and N) of the
system? i.e. when there is not yet any water in the glass…

Answer Since these are extensive quantities, they must all be zero when there is no water in the glass.

Small white boards Suppose the water is added at a rate dN
dt

. Suppose you know the values of N , S,
V , and U for a given amount of room temperature water (which we can call N0, S0, etc.). Find
the rate of change of these quantities.

Answer Because these are extensive quantities, they must all be increasing with equal proportion

dV

dt
=

V0

N0

dN

dT
(67)

dS

dt
=

S0

N0

dN

dT
(68)

dU

dt
=

U0

N0

dN

dT
(69)

This tells us that differential changes to each of these quantities must be related in the same way,
for this process of pouring in more identical water. And we can drop the 0 subscript, since the ratio of
quantities is the same regardless of how much water we have.

dV =
V0

N0

dN (70)

dV =
V

N
dN (71)

dU =
U

N
dN (72)

Thus given the thermodynamic identity

dU = TdS − pdV + µdN (73)
U

N
dN = T

S

N
dN − p

S

N
dN + µdN (74)

U = TS − pV + µN (75)

This is both crazy and awesome. It feels very counter-intuitive, and you might be wondering why we
didn’t tell you this way back in Energy and Entropy to save you all this trouble with derivatives. The
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answer is that it is usually not directly all that helpful, since we now have a closed-form expression for U
in terms of six mutually dependent variables! So you can’t use this form in order to evaluate derivatives
(much).

This expression is however very helpful in terms of understanding the chemical potential. Consider
the Gibbs free energy:

G ≡ U − TS + pV (76)
= µN (77)

which tells us that the chemical potential is just the Gibbs free energy per particle. If we have several
chemical species, this expression just becomes

G =
∑
i

µiNi (78)

so each chemical potential is a partial Gibbs free energy per molecule.
This explains why the chemical potential is seldom discussed in chemistry courses: they spend all

their time talking about the Gibbs free energy, which just turns out to be the same thing as the chemical
potential.

Side note There is another interesting thing we can do with the relationship that

U = TS − pV + µN (79)

and that involves zapping it with d. This tells us that

dUTdS + SdT − pdV − V dp+ µdN +Ndµ (80)

which looks downright weird, since it’s got twice as many terms as we normally see. This tells us
that the extra terms must add to zero:

0 = SdT − V dp+Ndµ (81)

This relationship (called the Gibbs-Duhem equation) tells us just how T , p and µ must change in
order to keep our extensive quantities extensive and our intensive quantities intensive.

1.2.3 Chemistry

Chemical equilibrium is somewhat different than the diffusive equilibrium that we have considered so
far. In diffusive equilibirum, two systems can exchange particles, and the two systems at equilibirum
must have equal chemical potentials. In chemistry, particles can be turned into other particles, so we
have a more complicated scenario, but it still involves changing the number of particles in a system. In
chemical equilibrium, when a given reaction is in equilibrium the sum of the chemical potentials of the
reactants must be equal to the sum of the chemical potentials of the products.

An example may help. Consider for instance making water from scratch:

2H2 + O2 → 2H2O (82)
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In this case in chemical equilibrium

2µH2 + µO2 = 2µH2O (83)

We can take this simple equation, and turn it into an equation involving activities, which is productive
if you think of an activity as being something like a concentration (and if you care about equilibrium
concentrations):

eβ(2µH2O−2µH2
−µO2

) = 1 (84)
λ2

H2O
λO2λ

2
H2

= 1 (85)

Now this looks sort of like the law of mass action, except that our equilibrium constant is 1. To get
to the more familiar law of mass action, we need to introduce (a caricature of) the chemistry version
of activity. The thing in square brackets is actually a relative activity, not a concentration as is often
taught in introductory classes (and was considered correct prior to the late nineteenth century). It is
only proportional to concentration to the extent that the substance obeys the ideal gas relationship
between chemical potential and concentration. Fortunately, this is satisfied for just about anything
at low concentration. For solvents (and dense materials like a solid reactant or product) the chemical
potential doesn’t (appreciably) change as the reaction proceeds, so it is normally omitted from the mass
action equation. When I was taught this in a chemistry class back in the nineties, I was taught that the
“concentration” of such a substance was dimensionless and had value 1.

Specifically, we define the thing in square brackets as

[H2O] ≡ n∗
H2Oe

β(µH2O−µ∗
H2O) (86)

= n∗
H2O

λH2O

λ∗
H2O

(87)

where n∗ is a reference concentration, and µ∗ is the chemical potential of the fluid at that reference
density. Using this notation, we can solve for the activity

λH2O = λ∗
H2O

[H2O]

n∗
H2O

(88)

So now we can rewrite our weird mass action equation from above(
λ∗

H2O
[H2O]
n∗

H2O

)2
(
λ∗

O2

[O2]
n∗

O2

)(
λ∗

H2

[H2]
n∗

H2

)2 = 1 (89)

and then we can solve for the equilibrium constant for the reaction
[H2O]2

[O2][H2]2
=

(n∗
H2O)

2

n∗
O2
(n∗

H2
)2
λ∗

O2
(λ∗

H2
)2

(λ∗
H2O)

2
(90)

=
(n∗

H2O)
2

n∗
O2
(n∗

H2
)2
eβ(µ

∗
O2

+2µ∗
H2

−2µ∗
H2O) (91)

=
(n∗

H2O)
2

n∗
O2
(n∗

H2
)2
e−β∆G∗ (92)
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where at the last step I defined ∆G∗ as the difference in Gibbs free energy between products and
reactants, and used the fact that the chemical potential is the Gibbs free energy per particle.

This expression for the chemical equilibrium constant is the origin of the intuition that a reaction
will go forward if the Gibbs free energy of the products is lower than that of the reactants.

I hope you found interesting this little side expedition into chemistry. I find fascinating where these
fundamental chemistry relations come from, and also that the relationship between concentrations arises
from an ideal gas approximation! Which is why it is only valid in the limit of low concentration, and
why the solvent is typically omitted from the equilibrium constant, since its activity is essentially fixed.
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