
Ideal Gas Handout

1 Week 6: Ideal gas (K&K 6, Schroeder 6.7)
1.1 Midterm on Monday
Topics are everything through week 4, including week 3 homework, which was due in week 4. Problems
should be similar to homework problems, but designed to be completed in class. The exam will be closed
notes. You should be able to remember the fundamental equations:

dU = TdS − pdV (1)
F = U − TS (2)

dF = −SdT − pdV (3)

Pi =
e−βEi

Z
(4)

Z =
∑
i

e−βEi (5)

U =
∑
i

EiPi (6)

F = −kT lnZ (7)
S = −k

∑
i

Pi lnPi (8)

(9)

If you need a property of a particular system (the ideal gas, the simple harmonic oscillator), it will be
given to you. There is no need, for instance, to remember the Stefan-Boltzmann law or the Planck
distribution.

1.2 Motivation
You may recall that when we solved for the free energy of an ideal gas, we had a fair amount of work to
sum over all possible sets of quantum numbers for each atom, and then to remove the double-counting
due to the fact that our atoms were identical. We had a similar issue when dealing with photon modes
and blackbody radiation, but in that case one approach was to treat each mode as a separate system,
and then just sum over all the modes separately, without ever needing to find the partition function of
all the modes taken together.

This week we will be looking at how we can treat each orbital (i.e. possible quantum state for a
single non-interacting particle) as a separate system (which may or may not be occupied). This can
only work when we work in the grand canonical ensemble, but will greatly simplify our understanding
of such systems.

1.3 Quantum mechanics and orbitals
Kittel uses the term orbital to refer to an energy eigenstate (or wave function) of a one-particle system.
How do things differ when we have more than one particle?
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Suppose we have three particles (and ignore spin for a moment). The wave function would be written
as Ψ(r⃗1, r⃗2, r⃗3, · · · ). This function in general has nothing to do with any single-particle orbitals. Orbitals
arise when we consider a Hamiltonian in which there are no interactions between particles:

Ĥ =
p̂21
2m

+ V (r⃗1) +
p̂22
2m

+ V (r⃗2) + · · · (10)

When our Hamiltonian is separable in this way (i.e. the particles don’t interact, and there are no terms
that involve both r⃗1 and r⃗2), we can use separation of variables in the solution, and we obtain a wave
function that is a product of orbitals:

|i1, i2, i3, · · · ⟩=̇ϕi1(r⃗1)ϕi2(r⃗2)ϕi3(r⃗3) · · · (11)

Assuming the potential and mass are the same for every particle, these orbitals are eigenstates of the
following single-particle eigenvalue equation:(

p̂2

2m
+ V (r⃗)

)
ϕi(r⃗) = εiϕi(r⃗) (12)

There is a catch, however, which arises if the particles are truly indistinguishable (as is the case for
electrons, protons, atoms of the same isotope, etc.). In this case, there is a symmetry which means that
permuting the labels of our particles cannot change any probabilities:

|Ψ(r⃗1, r⃗2, r⃗3, · · · )|2 = |Ψ(r⃗2, r⃗1, r⃗3, · · · )|2 (13)
= |Ψ(r⃗2, r⃗3, r⃗1, · · · )|2 (14)

The simple product we wrote above doesn’t have this symmetery, and thus while it is an eigenfunction of
our eigenvalue equation, it cannot represent the state of a real system of identical particles. Fortunately,
this is pretty easy to resolve: permuting the labels doesn’t change the energy, so we have a largish
degenerate subspace in which to work. We are simply required to take a linear combination of these
product states which does have the necessary symmetry.

The above equation, while true, does not tell us what happens to the wave function when we do a
permutation, only to its magnitude. As it turns out, there are two types of symmetry possible: bosons
and fermions.

1.3.1 Fermions

Fermions are particles with half-integer spin, such as electrons and protons. Fermions are antisymmetric
when we exchange the labels of any two particles.

Ψ(r⃗1, r⃗2, r⃗3, · · · ) = −Ψ(r⃗2, r⃗1, r⃗3, · · · ) (15)

This formula is Pauli’s exclusion principle.
This isn’t a quantum class, so I won’t say much more, but we do need to connect with the orbitals

picture. When we have non-interacting fermions, their energy eigenstates can be written using a Slater
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determinant, which is just a convenient way to write the proper antisymmetric linear combination of all
possible product states with the same set of orbitals:

Ψi1i2i3···(r⃗1, r⃗2, r⃗3, · · · ) =

1√
N !

∣∣∣∣∣∣∣∣∣
ϕi1(r⃗1) ϕi1(r⃗1) ϕi1(r⃗1) · · ·
ϕi2(r⃗1) ϕi2(r⃗1) ϕi2(r⃗1) · · ·
ϕi3(r⃗1) ϕi3(r⃗1) ϕi3(r⃗1) · · ·

... ... ... . . .

∣∣∣∣∣∣∣∣∣ (16)

This relies on the properties of a determinant, which changes sign if you swap two rows or two columns.
This means that if two of your orbitals are the same, the result will be zero, so the “occupancy” of
any orbital is either 0 or 1. Note that the N ! is required in order to ensure that the wave function is
normalized provided the orbitals are orthonormal.

1.3.2 Bosons

Bosons have integer spin, and differ from fermions in that their sign does not change when you inter-
change particles.

Ψ(r⃗1, r⃗2, r⃗3, · · · ) = Ψ(r⃗2, r⃗1, r⃗3, · · · ) (17)

The wavefunction for noninteracting bosons looks very much like the Slater determinant above, only
with a special version of the determinant that has all + signs. The bosons can have as many particles
as they want in a given orbital. In the limiting case where all particles are in the same orbital, a single
product of orbitals satisfies the required symmetry.

1.4 Fermi-Dirac distribution
Let us now consider a set of non-interacting fermions. These fermions have a Hamiltonian with a set of
single-particle energy eigenvalues given by εi. How do we find the probability of any given many-body
microstate? As always, the probability of any given microstate is given by the Boltzmann distribution,
but given that are particles are non-interacting, we’d prefer to deal with just one at a time. As it turns
out, dealing with one particle at a time is not really possible, but in a grand canonical ensemble we can
deal with a single orbital at a time with much greater ease. We can think of each orbital as a separate
system, and ask how many particles it has! Particles can now be exchanged between orbitals just like
they were between systems last week.

Small groups Work out the grand partition function for a single orbital with energy εi that may
occupied by a fermion.

Answer Now that we are thinking of an orbital as a system, we can pretty easily write down all the
possible states of that system: it is either occupied or unoccupied. The latter case has 0 energy,
and also N = 0, while the former case has energy ε and N = 1. Summing over these gives the
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Gibbs sum

Z =

all µstates∑
i

e−β(εi−µNi) (18)

= 1 + e−β(ε−µ) (19)

Note that the same statistics would apply to a state for a classical particle if there were an infinite
energy required to have two particles in the same state. The physics here is a system that can hold
either zero or one particles, and there are various ways you could imagine that happening.

Small groups Find the energy and the average occupancy (⟨N⟩) of the orbital

Answer If we want to find ⟨N⟩ of the system, we can do that in the usual way Finding is basically the
same

⟨N⟩ =
∑
i

NiPi (20)

=
0 + e−β(ε−µ)

Z
(21)

=
e−β(ε−µ)

1 + e−β(ε−µ)
(22)

=
1

1 + eβ(ε−µ)
(23)

Finding the energy is basically the same, since the energy is proportional to the occupancy:

⟨E⟩ =
∑
i

EiPi (24)

=
0 + εe−β(ε−µ)

Z
(25)

= ε⟨N⟩ (26)

The average occupancy of an orbital is called the Fermi-Dirac function, and is normally written as:

f(ε) =
1

eβ(εi−µ) + 1
(27)

Whenever you are looking at non-interacting fermions, f(ε) will be very helpful.

Small groups Sketch the Fermi-Dirac function.

When talking about electrons, we often refer to the chemical potential µ as the Fermi level. Kittel
also defines the Fermi energy εF as the Fermi level when the temperature is zero, i.e.

εF ≡ µ(T = 0) (28)

At zero temperature, all the orbitals with energy less than εF are occupied, while all the orbitals with
higher energy are unoccupied.
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Actual electrons You might (or might not) be wondering how we can talk about electrons as non-
interacting particles. After all, they are charged particles, which naturally repel each other rather
strongly. Indeed, a Slater determinant is a terrible approximation for an energy eigenstate for
any many-electron system. So why are we bothering talking about orbitals and the Fermi-Dirac
distribution that relies on orbitals being an actual thing?
I’m not going to thoroughly explain this, but rather just give a few hints about why what we’re
doing might be reasonable. The key idea is that what we are really interested in is the behavior
of excited states of our many-body system. (The ground state is also very interesting, e.g. if
you want to study vibrations or phonons, but not in terms of the thermal behavior of the elec-
trons themselves.) Fortunately, even though the electrons really do interact with one another
very strongly, it is possible to construct a picture of elementary excitations that treats these
excitations as not interacting with one another. In this kind of a picture, what we are talking
about are called quasiparticles. These represent an excitation of the many-body state. And it
turns out that in many cases (particularly for solids) we can represent a given excited state of the
many-body system as a sum of the energy of a bunch of non-interacting quasiparticles. When
this breaks down, we invent new names like exciton to represent an excitation in which more
than one quasiparticle are interacting.

1.5 Bose-Einstien distribution
The same ideas apply to bosons as to fermions: we can treat each orbital as a separate system in the
grand canonical ensemble. In this case, however, the occupancy N can have any (non-negative) value.
Small groups Solve for the Gibbs sum for an orbital with energy ε, and solve for the ⟨N⟩ for a single

orbital occupied by bosons.

Answer The Gibbs sum will be

Z =
∞∑

N=0

e−β(Nε−µN) (29)

=
∞∑
n=0

(
e−β(ε−µ)

)N (30)

=
∞∑
n=0

(
e−β(ε−µ)

)N (31)

This looks suspiciously like a simple harmonic oscillator. The same harmonic summation trick
applies, and we see that

Z = 1 + e−β(ε−µ) +
(
e−β(ε−µ)

)2
+ · · · (32)

e−β(ε−µ)Z = e−β(ε−µ) +
(
e−β(ε−µ)

)2
+ · · · (33)

Subtracting the two gives (
1− e−β(ε−µ)

)
Z = 1 (34)

Z =
1

1− e−β(ε−µ)
(35)
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Solving for the average occupancy ⟨N⟩ is again more tedious than for a fermion:

⟨N⟩ =
∑
i

NiPi (36)

=
1

Z

∞∑
N=0

Ne−β(ε−µ)N (37)

=
1

Z
∂Z
∂µ

(
1

β

)
(38)

= −
hhhhhhh1− e−β(ε−µ)

(1− e−β(ε−µ))A
2

(
−e−β(ε−µ)

)
��β

(
1

��β

)
(39)

=
e−β(ε−µ)

1− e−β(ε−µ)
(40)

f(ε) =
1

eβ(ε−µ) − 1
(41)

This turns out to be just the Planck distribution we aleady saw, only with a chemical potential as
reference. Why does this bosonic system look like a simple harmonic oscillator? Since the particles are
non-interacting, we have the same set of energy eigenvalues, which is to say an equally spaced series of
states. This is conversely related to why we can describe solutions to the simple harmonic oscillator as
bosonic phonons.

Small groups Sketch the Bose-Einstein distribution function.

This expression, the Bose-Einstein distribution, tells us that at low temperatures, we could end up
seeing a lot of particles in low energy states (if there are any eigenvalues below µ), in contrast to the
Fermi-Dirac distribution, which never sees more than one particle per state.

1.6 Entropy
Small groups Find the entropy of a single orbital that may hold a fermion.

Answer We begin with the probabilities of the two microstates:

P0 =
1

Z
P1 =

e−β(ε−µ)

Z
(42)

where

Z = 1 + e−β(ε−µ) (43)

Now we just find the entropy using FINISH THIS!
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1.7 Classical ideal gas
We are now prepared to talk about a gas in the classical limit. In the classical limit, there is no
difference in behavior between fermions and bosons. This happens when the probability of finding a
particle in a particular orbital is ≪ 1. And this happens when β(ε − µ) ≫ 1 for all orbitals, i.e. when
µ is very negative. When this is the case, both the Fermi-Dirac distribution and the Bose-Einstein
distribution become identical.

fFD(ε) =
1

eβ(ε−µ) + 1
≈ e−β(ε−µ) (44)

fBE(ε) =
1

eβ(ε−µ) − 1
≈ e−β(ε−µ) (45)

In this limit (which is the low-density limit), the system will behave as a classical ideal gas.
A reasonable question is, “what is the chemical potential.” We already handled this, but can now look

at this answer in terms of orbitals and the classical distribution function. (Note: classical distribution
function is a bit of a misnomer in this context, as it defines how many particles are in a given quantum
mechanical orbital.)

⟨N⟩ =
orbitals∑

i

f(εi) (46)

=
orbitals∑

i

e−β(εi−µ) (47)

= eβµ
orbitals∑

i

e−β(εi) (48)

= eβµZ1 (49)
N = eβµnQV (50)

where Z1 is the partition function for a single particle in a box, which we derived a few weeks ago to be
nQV where nQ ≡

(
mkT
2πℏ2

) 3
2 . Thus we can once again find the expression we found last week, where

eβµ =
1

nQ

N

V
=

n

nQ

(51)

We can solve for the chemical potential

µ = kT
(
lnN − lnV − 3

2
ln(kT ) + 3

2
ln
(
2πℏ2/m

))
(52)

Thus it decreases as volume increases or as the temperature increases. We can further find the free energy
by integrating the chemical potential. This is again redundant when compared with the approach we
already solved for this. Remember that

dF = −SdT − pdV + µdN (53)

µ =

(
∂F

∂N

)
V,T

(54)
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Note that this must be an integral at fixed V and T :

F =

∫ N

0

µdN (55)

=

∫ N

0

kT (lnN − lnV − lnnQ) dN (56)

= kT (N lnN −N −N lnV −N lnnQ) (57)

= NkT

(
ln

(
n

nQ

)
− 1

)
(58)

Small groups Solve for the entropy of the ideal gas (from this free energy).

Answer

−S =

(
∂F

∂T

)
V,N

(59)

= Nk

(
ln

(
n

nQ

)
− 1

)
− NkT

nQ

dnQ

dT
(60)

= Nk

(
ln

(
n

nQ

)
− 1

)
− Nk@@T

��nQ

3

2
��nQ

@@T
(61)

−S = Nk

(
ln

(
n

nQ

)
− 5

2

)
(62)

S = Nk

(
ln
(nQ

n

)
+

5

2

)
(63)

This expression for the entropy is known as the Sackur-Tetrode equation.

Small groups Solve for the pressure of the ideal gas (from the free energy)

Answer

p = −
(
∂F

∂V

)
T,N

(64)

=
NkT

V
(65)

That was pretty easy, once we saw that nQ was independent of volume. This expression is known
as the ideal gas law.

Small groups Solve for the internal energy of the ideal gas

Answer

U = F + TS (66)

=
3

2
NkT (67)

Also pretty familiar.
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Small groups Solve for the heat capacity at constant volume of the ideal gas

Answer

CV =

(
∂U

∂T

)
V,N

(68)

= T

(
∂S

∂T

)
V,N

(69)

=
3

2
Nk (70)

This one is relatively easy.

Small groups Solve for the heat capacity at constant pressure of the ideal gas

Answer

Cp = T

(
∂S

∂T

)
p,N

(71)

(72)

This one requires one (small) step more. We have to convert the volume into a pressure in the
free energy expression.

Cp = T

(
∂Nk

(
ln
(nQ

n

)
+ 5

2

)
∂T

)
p,N

(73)

= NkT

(
∂
(
ln
(nQ

n

)
+ 5

2

)
∂T

)
p,N

(74)

= NkT

∂ ln
(

V nQ

N

)
∂T


p,N

(75)

= NkT

∂ ln
(

NkT
p

nQ

N

)
∂T


p,N

(76)

At this point we peek inside and see that nQ ∝ T
3
2 and can complete the derivative

Cp =
5

2
Nk (77)

This has been a series of practice computations involving the ideal gas. The results are useful for
some of your homework, and the process of finding these properties is something you will need to know
for the final exam. Ultimately, pretty much everything comes down to summing and integrating to find
partition functions, and then taking derivatives (and occasional integrals) to find everything else.
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