Students use their arms to depict (sequentially) the different cylindrical and spherical basis vectors at the location of their shoulder (seen in relation to a specified origin of coordinates: either a set of axes hung from the ceiling of the room or perhaps a piece of furniture or a particular corner of the room).
1. << Curvilinear Coordinates Introduction | Curvilinear Coordinate Sequence |
We usually do this activity after giving the students a brief introduction to cylindrical and spherical coordinates (e.g. Curvilinear Coordinates Introduction).
Curvilinear basis vectors make a nice example of a vector field: The basis vectors adapted to a single coordinate form a simple example of the geometrical notion of a vector field, i.e. a vector at every point in space. For example, the polar basis vectors \({\hat{r},\hat{\phi}}\) are shown in these figures
\(\hat{\theta}\) should point generally downward: Make sure that the directions in which students point agree with the directions in the figures below.
In particular, \(\hat{\theta}\) should point generally downward.
No wrap-up in needed beyond covering all the points listed in Student Conversations. The student handout solution can be provided to students. It contains figures that show the coordinate basis vectors at a single point.
You will probably be doing this activity in-class, from directions given by the instructor. If you are doing it on your own, then choose a point in the room that you are in to be the origin. Imagine that your right shoulder is a point in space, relative to that origin. Point your right arm in succession in each of the directions of the basis vectors adapted the various coordinate systems:
- \(\left\{\hat{x},\hat{y},\hat{z}\right\}\) in rectangular coordinates.
- \(\left\{\hat{s},\hat{\phi},\hat{z}\right\}\) in cylindrical coordinates.
- \(\left\{\hat{r},\hat{\theta},\hat{\phi}\right\}\) in spherical coordinates.
group Small Group Activity
30 min.
coulomb's law electric field charge ring symmetry integral power series superposition
Students work in groups of three to use Coulomb's Law \[\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the electric field, \(\vec{E}(\vec{r})\), everywhere in space, due to a ring of charge.
In an optional extension, students find a series expansion for \(\vec{E}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.
format_list_numbered Sequence
group Small Group Activity
30 min.
vector calculus coordinate systems curvilinear coordinates
In this small group activity, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in different coordinate systems (cartesian, cylindrical, spherical).
Use Vector Differential--Rectangular as an introduction. This activity can be done simultaneously with Pineapples and Pumpkins where students or the instructor cut volume elements out of pineapples and/or pumpkins to show the geometry.
group Small Group Activity
30 min.
Students use known algebraic expressions for vector line elements \(d\vec{r}\) to determine all simple vector area \(d\vec{A}\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.
This activity is identical to Scalar Surface and Volume Elements except uses a vector approach to find directed surface and volume elements.
assignment_ind Small White Board Question
10 min.
vector differential rectangular coordinates math
In this introductory lecture/SWBQ, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in rectangular coordinates for coordinate equals constant paths.
This activity can be done as a mini-lecture/SWBQ as an introduction to Vector Differential--Curvilinear where students find the vector differential in cylindrical and spherical coordinates..
group Small Group Activity
30 min.
magnetic fields current Biot-Savart law vector field symmetry
Students work in groups of three to use the Biot-Savart law \[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.
In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.
assignment Homework
The electrostatic potential due to a point charge at the origin is given by: \begin{equation} V=\frac{1}{4\pi\epsilon_0} \frac{q}{r} \end{equation}
assignment Homework
The distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) is a coordinate-independent, physical and geometric quantity. But, in practice, you will need to know how to express this quantity in different coordinate systems.
group Small Group Activity
30 min.
assignment Homework