In this lecture, the instructor guides a discussion about translating between bra-ket notation and wavefunction notation for quantum systems.
1. << Going from Spin States to Wavefunctions | Completeness Relations | Dimensional Analysis of Kets >>
The wavefunction is related to writing the state in the position basis (or the position “representation”) by inserting a completeness relation for the position basis.:
\begin{align*} \left|{\psi}\right\rangle &= (1) \left|{\psi}\right\rangle \\ &=\left(\int_{\tiny\mbox{all space}} \left|{x}\right\rangle \left\langle {x}\right|dx\right)\left|{\psi}\right\rangle \\ &= \int_{\tiny\mbox{all space}} \left|{x}\right\rangle \left\langle {x}\middle|{\psi}\right\rangle dx \\ &= \int_{\tiny\mbox{all space}} \underbrace{\left\langle {x}\middle|{\psi}\right\rangle }_{\mbox{wavefunction}}\left|{x}\right\rangle dx \\ &= \int_{\tiny\mbox{all space}} \underbrace{\psi(x)}_{\mbox{wavefunction}} \left|{x}\right\rangle dx \\ \end{align*}
Bra-ket Notation: \(\left|{\psi}\right\rangle \doteq \left\langle {x}\middle|{\psi}\right\rangle \)
Wavefunction Notation: \(\left|{\psi}\right\rangle \doteq \psi(x)\)
The dot equals sign indicates that the right hand side is an expression of the state in a specific but unwritten basis.
\begin{align*} \left\langle {\psi}\right| &= (\left|{\psi}\right\rangle )^*\\ &\doteq (\left\langle {x}\middle|{\psi}\right\rangle )^*\\ &\doteq \left\langle {\psi}\middle|{x}\right\rangle \\ \left\langle {\psi}\right| &\doteq \psi^*(x) \end{align*}
Bra-ket Notation: \(\left\langle {\psi}\right| \doteq \left\langle {\psi}\middle|{x}\right\rangle \)
Wavefunction Notation: \(\left\langle {\psi}\right| \doteq \psi^*(x)\)
For example, for an energy measurement: Bra-ket Notation: \begin{align*} c_{n} = \left\langle {E_n}\middle|{\psi}\right\rangle \end{align*}
Wavefunction Notation:
Go to wavefunction notation by inserting a completeness relation for the position basis.
\begin{align*} c_{n} &= \left\langle {E_n}\right|1\left|{\psi}\right\rangle \\ &= \left\langle {E_n}\right| \left( \int_{\tiny\mbox{all space}} \left|{x}\right\rangle \left\langle {x}\right| dx \right)\left|{\psi}\right\rangle \\ &= \int_{\tiny\mbox{all space}} \left\langle {E_n}\middle|{x}\right\rangle \left\langle {x}\middle|{\psi}\right\rangle dx\\ &= \int_{\tiny\mbox{all space}} E_n^*(x) \, \psi(x)dx\\ \end{align*}
Bra-ket Notation: \begin{align*} \mathcal{P}(E_n) &= | c_n |^2 \\ &= |\left\langle {E_n}\middle|{\psi}\right\rangle |^2 \\ \end{align*}
Wavefunction Notation:
Using the result for the probability amplitude in wavefunction notation:
\begin{align*} \mathcal{P}(E_n) &= | c_n |^2 \\ &= \left| \int_{\tiny\mbox{all space}} E_n^*(x) \, \psi(x) dx \right|^2\\ \end{align*} Notice the norm square is outside of the integral!
Bra-ket Notation: \begin{align*} 1 &= \left\langle {\psi}\middle|{\psi}\right\rangle \\ \end{align*}
Wavefunction Notation:
Go to wavefunction notation by inserting a completeness relation for the position basis.
\begin{align*} 1 &= \left\langle {\psi}\right|1\left|{\psi}\right\rangle \\ &= \left\langle {\psi}\right|\left( \int_{\tiny\mbox{all space}} \left|{x}\right\rangle \left\langle {x}\right| dx \right)\left|{\psi}\right\rangle \\ &= \int_{\tiny\mbox{all space}} \left\langle {\psi}\middle|{x}\right\rangle \left\langle {x}\middle|{\psi}\right\rangle dx \\ &= \int_{\tiny\mbox{all space}} \psi^*(x)\, \psi(x) dx \\ &= \int_{\tiny\mbox{all space}} |\psi(x)|^2 dx \\ \end{align*} Notice norm squared inside the integral!
Bra-ket Notation: \begin{align*} \mathcal{P}(a \le n \le b) &= \sum_{n=a}^b| c_n |^2 \\ \end{align*}
Wavefunction Notation:
Reinterpret \(|\psi(x)|^2\) as a probability density: \begin{align*} \mathcal{P}(a \le x \le b) &= \int_{a}^b |\psi(x)|^2 dx \\ \end{align*} Notice norm squared inside the integral!
group Small Group Activity
60 min.
Wavefunctions quantum states probability amplitude histograms matrix notation of quantum states Arms representation
Students review using the Arms representation to represent states for discrete quantum systems and connecting the Arms representation to histogram and matrix representation. The student then extend the Arms representation to begin exploring the continuous position basis.group Small Group Activity
30 min.
central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy
Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.group Small Group Activity
30 min.
central forces quantum mechanics eigenstates eigenvalues angular momentum time dependence hermitian operators probability degeneracy quantum measurements
Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.group Small Group Activity
30 min.
central forces quantum mechanics eigenstates eigenvalues hermitian operators quantum measurements degeneracy expectation values time dependence
Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.group Small Group Activity
30 min.
keyboard Computational Activity
120 min.
inner product wave function quantum mechanics particle in a box
Students compute inner products to expand a wave function in a sinusoidal basis set. This activity introduces the inner product for wave functions, and the idea of approximating a wave function using a finite set of basis functions.assignment Homework
group Small Group Activity
30 min.
Cartesian Basis $S_z$ basis completeness normalization orthogonality basis
Student explore the properties of an orthonormal basis using the Cartesian and \(S_z\) bases as examples.assignment Homework
Consider the following wave functions (over all space - not the infinite square well!):
\(\psi_a(x) = A e^{-x^2/3}\)
\(\psi_b(x) = B \frac{1}{x^2+2} \)
\(\psi_c(x) = C \;\mbox{sech}\left(\frac{x}{5}\right)\) (“sech” is the hyperbolic secant function.)
In each case:
group Small Group Activity
30 min.
central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum hermitian operators probability superposition
Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.