Activity: Visualising the Gradient

Static Fields 2023 (7 years)
Students use prepared Sage code to predict the gradient from contour graphs of 2D scalar fields.
What students learn
  • Model the gradient using a computer algebra system.
  • Visualize the geometric relationship between the gradient and the contours plot of a scalar field
  • Clarify how gradients look in two and three dimensions.

Use the Sage code at Using Technology to Visualize the Gradient to plot scalar functions of two variables, predict what a plot of the gradient looks like, and then check it.

Instructor's Guide

Student Task

This activity is a great follow up to Acting Out the Gradient. The students should know that the gradient is perpendicular to level curves (surfaces) and that its magnitude is the maximum slope. They use this information to predict the gradient vector field from looking at level curves for scalar fields. Then check their predictions with the Mathematica worksheet. The worksheet is open-ended and students can plot some scalar fields of their own.

  • computer Using Technology to Visualize Potentials

    computer Mathematica Activity

    30 min.

    Using Technology to Visualize Potentials
    Static Fields 2023 (6 years)

    electrostatic potential visualization

    Begin by prompting the students to brainstorm different ways to represent a three dimensional scalar field on a 2-D surface (like their paper or a whiteboard). The students use a pre-made Sage code or a Mathematica worksheet to visualize the electrostatic potential of several distributions of charges. The computer algebra systems demonstrate several different ways of plotting the potential.
  • group Number of Paths

    group Small Group Activity

    30 min.

    Number of Paths

    E&M Conservative Fields Surfaces

    Student discuss how many paths can be found on a map of the vector fields \(\vec{F}\) for which the integral \(\int \vec{F}\cdot d\vec{r}\) is positive, negative, or zero. \(\vec{F}\) is conservative. They do a similar activity for the vector field \(\vec{G}\) which is not conservative.
  • group The Hill

    group Small Group Activity

    30 min.

    The Hill
    Vector Calculus II 23 (7 years)

    Gradient

    Gradient Sequence

    In this small group activity, students determine various aspects of local points on an elliptic hill which is a function of two variables. The gradient is emphasized as a local quantity which points in the direction of greatest change at a point in the scalar field.
  • group DELETE Navigating a Hill

    group Small Group Activity

    30 min.

    DELETE Navigating a Hill
    Static Fields 2023 (5 years) In this small group activity, students determine various aspects of local points on an elliptic hill which is a function of two variables. The gradient is emphasized as a local quantity which points in the direction of greatest change at a point in the scalar field.
  • assignment Contours

    assignment Homework

    Contours

    Gradient Sequence

    Static Fields 2023 (6 years)

    Shown below is a contour plot of a scalar field, \(\mu(x,y)\). Assume that \(x\) and \(y\) are measured in meters and that \(\mu\) is measured in kilograms. Four points are indicated on the plot.

    1. Determine \(\frac{\partial\mu}{\partial x}\) and \(\frac{\partial\mu}{\partial y}\) at each of the four points.
    2. On a printout of the figure, draw a qualitatively accurate vector at each point corresponding to the gradient of \(\mu(x,y)\) using your answers to part a above. How did you choose a scale for your vectors? Describe how the direction of the gradient vector is related to the contours on the plot and what property of the contour map is related to the magnitude of the gradient vector.
    3. Evaluate the gradient of \(h(x,y)=(x+1)^2\left(\frac{x}{2}-\frac{y}{3}\right)^3\) at the point \((x,y)=(3,-2)\).

  • accessibility_new Acting Out the Gradient

    accessibility_new Kinesthetic

    10 min.

    Acting Out the Gradient
    Static Fields 2023 (7 years)

    gradient vector fields electrostatics

    Gradient Sequence

    Students are shown a topographic map of an oval hill and imagine that the classroom is on the hill. They are asked to point in the direction of the gradient vector appropriate to the point on the hill where they are "standing".
  • group Electric Field Due to a Ring of Charge

    group Small Group Activity

    30 min.

    Electric Field Due to a Ring of Charge
    Static Fields 2023 (8 years)

    coulomb's law electric field charge ring symmetry integral power series superposition

    Power Series Sequence (E&M)

    Ring Cycle Sequence

    Students work in small groups to use Coulomb's Law \[\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the electric field, \(\vec{E}(\vec{r})\), everywhere in space, due to a ring of charge.

    In an optional extension, students find a series expansion for \(\vec{E}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

  • group Directional Derivatives

    group Small Group Activity

    30 min.

    Directional Derivatives
    Vector Calculus I 2022

    Directional derivatives

    Gradient Sequence

    This small group activity using surfaces relates the geometric definition of directional derivatives to the components of the gradient vector. Students work in small groups to measure a directional derivative directly, then compare its components with measured partial derivatives in rectangular coordinates. The whole class wrap-up discussion emphasizes the relationship between the geometric gradient vector and directional derivatives.
  • group The Hillside

    group Small Group Activity

    30 min.

    The Hillside
    Vector Calculus I 2022 (2 years)

    Gradient Sequence

    Students work in groups to measure the steepest slope and direction on a plastic surface, and to compare their result with the gradient vector, obtained by measuring its components (the slopes in the coordinate directions).
  • format_list_numbered Gradient Sequence

    format_list_numbered Sequence

    Gradient Sequence
    This sequence starts with an introduction to partial derivatives and continues through gradient. While some of the activities/problems are pure math, a number of other activities/problems are situated in the context of electrostatics. This sequence is intended to be used intermittently across multiple days or even weeks of a course or even multiple courses.

Author Information
Corinne Manogue, Tevian Dray
Learning Outcomes