assignment Homework
Using a dot product, find the angle between any two line segments that join the center of a regular tetrahedron to its vertices. Hint: Think of the vertices of the tetrahedron as sitting at the vertices of a cube (at coordinates (0,0,0), (1,1,0), (1,0,1) and (0,1,1)---you may need to build a model and play with it to see how this works!)
assignment Homework
Consider the vector field \(\vec F=(x+2)\hat{x} +(z+2)\hat{z}\).
assignment Homework
Imagine you're standing on a landscape with a local topography described by the function \(f(x, y)= k x^{2}y\), where \(k=20 \mathrm{\frac{m}{km^3}}\) is a constant, \(x\) and \(y\) are east and north coordinates, respectively, with units of kilometers. You're standing at the spot \((3~\mathrm{km},2~\mathrm{km})\) and there is a cottage located at \((1~\mathrm{km}, 2~\mathrm{km})\). At the spot you're standing, what is the slope of the ground in the direction of the cottage? Plot the function \(f(x, y)\) and also its level curves in your favorite plotting software. Does your result makes sense from the graph?
group Small Group Activity
30 min.
compare and contrast mathematica magnetic vector potential magnetic fields vector field symmetry
Students work in groups of three to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.
In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.
assignment Homework
Consider two particles of equal mass \(m\). The forces on the particles are \(\vec F_1=0\) and \(\vec F_2=F_0\hat{x}\). If the particles are initially at rest at the origin, find the position, velocity, and acceleration of the center of mass as functions of time. Solve this problem in two ways, with or without theorems about the center of mass motion. Write a short description comparing the two solutions.
assignment Homework
Using integration, find the surface area of a cone with height \(H\) and radius \(R\). Do this problem in both cylindrical and spherical coordinates.
group Small Group Activity
30 min.
central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy
Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.assignment Homework
In each of the following sums, shift the index \(n\rightarrow n+2\). Don't forget to shift the limits of the sum as well. Then write out all of the terms in the sum (if the sum has a finite number of terms) or the first five terms in the sum (if the sum has an infinite number of terms) and convince yourself that the two different expressions for each sum are the same:
group Small Group Activity
60 min.
Mechanics Gravitational Potential Energy Zero of Potential Introductory Physics
Students examine a plastic “surface” graph of the gravitational potential energy of an Earth-satellite system to explore the properties of gravitational potential energy for a spherically symmetric system.Learn more about the geometry of \(\vert \vec{r}-\vec{r'}\vert\) in two dimensions.
Make a sketch of the graph \begin{equation} \vert \vec{r} - \vec{a} \vert = 2 \end{equation}
for each of the following values of \(\vec a\): \begin{align} \vec a &= \vec 0\\ \vec a &= 2 \hat x- 3 \hat y\\ \vec a &= \text{points due east and is 2 units long} \end{align}