1. << Fourier Transform of the Delta Function | Fourier Transforms and Wave Packets | Fourier Transform of a Plane Wave >>
Suppose you have a definite function \(f(x)\) in mind and you already know its Fourier transform, i.e. you know how to do the integral \begin{equation} \tilde{f}(k)=\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty}e^{-ikx}\, f(x)\, dx \end{equation} Find the Fourier transform of the shifted function \(f(x-x_0)\).
Students will need a short lecture giving the definition of the Fourier Transform \begin{equation} {\cal{F}}(f) =\tilde{f} (k)= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx}\, f(x)\, dx \end{equation}
group Small Group Activity
5 min.
assignment Homework
group Small Group Activity
10 min.
assignment Homework
assignment_ind Small White Board Question
5 min.
assignment Homework
In each of the following sums, shift the index \(n\rightarrow n+2\). Don't forget to shift the limits of the sum as well. Then write out all of the terms in the sum (if the sum has a finite number of terms) or the first five terms in the sum (if the sum has an infinite number of terms) and convince yourself that the two different expressions for each sum are the same:
keyboard Computational Activity
120 min.
probability density particle in a box wave function quantum mechanics
Students compute probabilities and averages given a probability density in one dimension. This activity serves as a soft introduction to the particle in a box, introducing all the concepts that are needed.