Student handout: The Distance Formula (Star Trek)

Static Fields 2023 (6 years)
A short improvisational role-playing skit based on the Star Trek series in which students explore the definition and notation for position vectors, the importance of choosing an origin, and the geometric nature of the distance formula. \[\vert\vec{r}-\vec{r}^\prime\vert=\sqrt{(x-x^\prime)^2+(y-y^\prime)^2-(z-z^\prime)^2}\]
What students learn
  • Position vectors are needed to locate an object in space relative to an origin;
  • The distance between two objects, determined by the formula \(\vert\vec{r}-\vec{r^{\prime}}\vert\) is independent of origin and coordinates;
  • A coordinate dependent expression for the distance formula \(\vert\vec{r}-\vec{r^{\prime}}\vert=\sqrt{(x-x^{\prime})^2 + (y-y^{\prime})^2 }\) is equivalent to the Pythagorean Theorem.

Find a coordinate independent expression for the distance between two points and then evaluate it in rectangular coordinates.

  • assignment The puddle

    assignment Homework

    The puddle
    differentials Static Fields 2023 (6 years) The depth of a puddle in millimeters is given by \[h=\frac{1}{10} \bigl(1+\sin(\pi xy)\bigr)\] Your path through the puddle is given by \[x=3t \qquad y=4t\] and your current position is \(x=3\), \(y=4\), with \(x\) and \(y\) also in millimeters, and \(t\) in seconds.
    1. At your current position, how fast is the depth of water through which you are walking changing per unit time?
    2. At your current position, how fast is the depth of water through which you are walking changing per unit distance?
    3. FOOD FOR THOUGHT (optional)
      There is a walkway over the puddle at \(x=10\). At your current position, how fast is the depth of water through which you are walking changing per unit distance towards the walkway.
  • assignment Distance Formula in Curvilinear Coordinates

    assignment Homework

    Distance Formula in Curvilinear Coordinates

    Ring Cycle Sequence

    Static Fields 2023 (6 years)

    The distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) is a coordinate-independent, physical and geometric quantity. But, in practice, you will need to know how to express this quantity in different coordinate systems.

    1. Find the distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) in rectangular coordinates.
    2. Show that this same distance written in cylindrical coordinates is: \begin{equation} \left|\vec r -\vec r\,{}'\right| =\sqrt{s^2+s\,{}'^2-2ss\,{}'\cos(\phi-\phi\,{}') +(z-z\,{}')^2} \end{equation}
    3. Show that this same distance written in spherical coordinates is: \begin{equation} \left\vert\vec r -\vec r\,{}'\right\vert =\sqrt{r'^2+r\,{}^2-2rr\,{}' \left[\sin\theta\sin\theta\,{}'\cos(\phi-\phi\,{}') +\cos\theta\cos\theta\,{}'\right]} \end{equation}
    4. Now assume that \(\vec r\,{}'\) and \(\vec r\) are in the \(x\)-\(y\) plane. Simplify the previous two formulas.

  • assignment Rubber Sheet

    assignment Homework

    Rubber Sheet
    Energy and Entropy 2021 (2 years)

    Consider a hanging rectangular rubber sheet. We will consider there to be two ways to get energy into or out of this sheet: you can either stretch it vertically or horizontally. The distance of vertical stretch we will call \(y\), and the distance of horizontal stretch we will call \(x\).

    If I pull the bottom down by a small distance \(\Delta y\), with no horizontal force, what is the resulting change in width \(\Delta x\)? Express your answer in terms of partial derivatives of the potential energy \(U(x,y)\).

  • assignment Total Current, Circular Cross Section

    assignment Homework

    Total Current, Circular Cross Section

    Integration Sequence

    Static Fields 2023 (5 years)

    A current \(I\) flows down a cylindrical wire of radius \(R\).

    1. If it is uniformly distributed over the surface, give a formula for the surface current density \(\vec K\).
    2. If it is distributed in such a way that the volume current density, \(|\vec J|\), is inversely proportional to the distance from the axis, give a formula for \(\vec J\).

  • computer Visualizing Combinations of Spherical Harmonics

    computer Mathematica Activity

    30 min.

    Visualizing Combinations of Spherical Harmonics
    Central Forces 2023 (3 years) Students observe three different plots of linear combinations of spherical combinations with probability density represented by color on the sphere, distance from the origin (polar plot), and distance from the surface of the sphere.
  • group Charged Sphere

    group Small Group Activity

    30 min.

    Charged Sphere

    E&M Introductory Physics Electric Potential Electric Field

    Students use a plastic surface representing the potential due to a charged sphere to explore the electrostatic potential, equipotential lines, and the relationship between potential and electric field.
  • groups Pineapples and Pumpkins

    groups Whole Class Activity

    10 min.

    Pineapples and Pumpkins
    Static Fields 2023 (6 years)

    Integration Sequence

    There are two versions of this activity:

    As a whole class activity, the instructor cuts a pumpkin in order to produce a small volume element \(d\tau\), interspersing their work with a sequence of small whiteboard questions. This version of the activity is described here.

    As a small group activity, students are given pineapple rounds and pumpkin wedges to explore area volume elements in cylindrical and spherical coordinate systems. In this version of the activity, the fruit is distribued to the students with appropriate children's pumpkin cutting equipment, as part of activities Vector Differential--Curvilinear, Scalar Surface and Volume Elements, or Vector Surface and Volume Elements.

  • group Electric Potential of Two Charged Plates

    group Small Group Activity

    30 min.

    Electric Potential of Two Charged Plates
    Students examine a plastic "surface" graph of the electric potential due to two charged plates (near the center of the plates) and explore the properties of the electric potential.
  • assignment Linear Quadrupole (w/o series)

    assignment Homework

    Linear Quadrupole (w/o series)
    Static Fields 2023 (4 years) Consider a collection of three charges arranged in a line along the \(z\)-axis: charges \(+Q\) at \(z=\pm D\) and charge \(-2Q\) at \(z=0\).
    1. Find the electrostatic potential at a point \(\vec{r}\) on the \(x\)-axis at a distance \(x\) from the center of the quadrupole.

    2. A series of charges arranged in this way is called a linear quadrupole. Why?

  • assignment Central Force Definition

    assignment Homework

    Central Force Definition
    Central Forces 2023 (3 years)

    (Quick) Purpose: Recognize the definition of a central force. Build experience about which common physical situations represent central forces and which don't.

    Which of the following forces can be central forces? which cannot? If the force CAN be a central force, explain the circumstances that would allow it to be a central force.

    1. The force on a test mass \(m\) in a gravitational field \(\vec{g~}\), i.e. \(m\vec g\)
    2. The force on a test charge \(q\) in an electric field \(\vec E\), i.e. \(q\vec E\)
    3. The force on a test charge \(q\) moving at velocity \(\vec{v~}\) in a magnetic field \(\vec B\), i.e. \(q\vec v \times \vec B\)


Author Information
Corinne Manogue
Learning Outcomes