In this small group activity, students integrate over non-uniform charge densities in cylindrical and spherical coordinates to calculate total charge.
Each group will be given one of the charge distributions given below: (\(\alpha\) and \(k\) are constants with dimensions appropriate for the specific example.)
For your group's case, answer the following questions:
assignment Homework
For each case below, find the total charge.
assignment Homework
One way to write volume charge densities without using piecewise functions is to use step \((\Theta)\) or \(\delta\) functions. If you need to review this, see the following link in the math-physics book: https://paradigms.oregonstate.eduhttps://books.physics.oregonstate.edu/GMM/step.html
Consider a spherical shell with charge density \(\rho (\vec{r})=\alpha3e^{(k r)^3}\) between the inner radius \(a\) and the outer radius \(b\). The charge density is zero everywhere else. Use step functions to write this charge density as a single function valid everywhere in space.
assignment Homework
The gravitational field due to a spherical shell of matter (or equivalently, the
electric field due to a spherical shell of charge) is given by:
\begin{equation}
\vec g =
\begin{cases}
0&\textrm{for } r<a\\
-G \,\frac{M}{b^3-a^3}\,
\left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\
-G\,\frac{M}{r^2}\, \hat r & \textrm{for } r>b \\
\end{cases}
\end{equation}
This problem explores the consequences of the divergence theorem for this shell.
assignment Homework
assignment Homework
assignment Homework
For an infinitesimally thin cylindrical shell of radius \(b\) with uniform surface charge density \(\sigma\), the electric field is zero for \(s<b\) and \(\vec{E}= \frac{\sigma b}{\epsilon_0 s}\, \hat s\) for \(s > b\). Use the differential form of Gauss' Law to find the charge density everywhere in space.
assignment Homework
keyboard Computational Activity
120 min.
assignment Homework
In this course, two of the primary examples we will be using are the potential due to gravity and the potential due to an electric charge. Both of these forces vary like \(\frac{1}{r}\), so they will have many, many similarities. Most of the calculations we do for the one case will be true for the other. But there are some extremely important differences:
group Small Group Activity
30 min.
thermodynamics intensive extensive temperature volume energy entropy
Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.