Student handout: Gravitational Force

Students examine a plastic "surface" graph of the gravitational potential energy of a Earth-satellite system to make connections between gravitational force and gravitational potential energy.
What students learn
  • Recall intuitions about gravitational force and potential energy.
  • The magnitude of the gravitational force is given by the derivative of (the change in) the gravitational potential energy.
  • The direction of the gravitational force is opposite the sign of the slope of the potential energy.

Your group has a plastic surface and a contour map that represent the gravitational potential energy of a space station-Earth system as a function of the position of the space station relative to Earth. Solve the following problems together and discuss the results.

Compare Potentials: Rank the three points marked on the surface by gravitational potential energy from highest to lowest.

Identify Forces: What direction is the gravitational force at each of the marked points? Indicate the direction of each force with a vector on the contour map.

Rank the three points by the magnitude of the gravitational force.

Plot: Sketch a graph of the gravitational force vs. distance from the center of the Earth. Use the convention that positive forces point away from the center of the Earth.

Examine Changes: At each point, imagine that the space station moves a small distance (about 10 m) directly toward the center of the Earth.

  1. At each point, is the resulting change in gravitational potential energy positive, negative, or zero?
  2. Rank the three points by the magnitude of the change in gravitational potential energy.

Relate the Surfaces: The yellow surface represents the gravitational potential energy of an object close to the surface of Earth. How it is possible for both surfaces to correctly represent the gravitational potential energy when the object is near the Earth's surface?

Generate Graphs: Draw graphs of gravitational potential energy vs. distance and gravitational force vs. distance for the yellow surface.

Find Patterns: Examine the graphs of gravitational potential energy and force for both the green and yellow surfaces.

What patterns do you see between gravitational force and gravitational potential energy?


  • group Gravitational Potential Energy

    group Small Group Activity

    60 min.

    Gravitational Potential Energy

    Mechanics Gravitational Potential Energy Zero of Potential Introductory Physics

    Students examine a plastic “surface” graph of the gravitational potential energy of an Earth-satellite system to explore the properties of gravitational potential energy for a spherically symmetric system.
  • assignment Potential vs. Potential Energy

    assignment Homework

    Potential vs. Potential Energy
    Static Fields 2023 (6 years)

    In this course, two of the primary examples we will be using are the potential due to gravity and the potential due to an electric charge. Both of these forces vary like \(\frac{1}{r}\), so they will have many, many similarities. Most of the calculations we do for the one case will be true for the other. But there are some extremely important differences:

    1. Find the value of the electrostatic potential energy of a system consisting of a hydrogen nucleus and an electron separated by the Bohr radius. Find the value of the gravitational potential energy of the same two particles at the same radius. Use the same system of units in both cases. Compare and the contrast the two answers.
    2. Find the value of the electrostatic potential due to the nucleus of a hydrogen atom at the Bohr radius. Find the gravitational potential due to the nucleus at the same radius. Use the same system of units in both cases. Compare and contrast the two answers.
    3. Briefly discuss at least one other fundamental difference between electromagnetic and gravitational systems. Hint: Why are we bound to the earth gravitationally, but not electromagnetically?

  • assignment Central Force Definition

    assignment Homework

    Central Force Definition
    Central Forces 2023 (3 years)

    (Quick) Purpose: Recognize the definition of a central force. Build experience about which common physical situations represent central forces and which don't.

    Which of the following forces can be central forces? which cannot? If the force CAN be a central force, explain the circumstances that would allow it to be a central force.

    1. The force on a test mass \(m\) in a gravitational field \(\vec{g~}\), i.e. \(m\vec g\)
    2. The force on a test charge \(q\) in an electric field \(\vec E\), i.e. \(q\vec E\)
    3. The force on a test charge \(q\) moving at velocity \(\vec{v~}\) in a magnetic field \(\vec B\), i.e. \(q\vec v \times \vec B\)

  • assignment Gravitational Field and Mass

    assignment Homework

    Gravitational Field and Mass
    Static Fields 2023 (5 years)

    The gravitational field due to a spherical shell of matter (or equivalently, the electric field due to a spherical shell of charge) is given by: \begin{equation} \vec g = \begin{cases} 0&\textrm{for } r<a\\ -G \,\frac{M}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ -G\,\frac{M}{r^2}\, \hat r & \textrm{for } r>b \\ \end{cases} \end{equation}

    This problem explores the consequences of the divergence theorem for this shell.

    1. Using the given description of the gravitational field, find the divergence of the gravitational field everywhere in space. You will need to divide this question up into three parts: \(r<a\), \(a<r<b\), and \(r>b\).
    2. Briefly discuss the physical meaning of the divergence in this particular example.
    3. For this gravitational field, verify the divergence theorem on a sphere, concentric with the shell, with radius \(Q\), where \(a<Q<b\). ("Verify" the divergence theorem means calculate the integrals from both sides of the divergence theorem and show that they give the same answer.)
    4. Briefly discuss how this example would change if you were discussing the electric field of a uniformly charged spherical shell.

  • face Unit Learning Outcomes: Classical Mechanics Orbits

    face Lecture

    5 min.

    Unit Learning Outcomes: Classical Mechanics Orbits
    Central Forces 2023 This handout lists Motivating Questions, Key Activities/Problems, Unit Learning Outcomes, and an Equation Sheet for a Unit on Classical Mechanics Orbits. It can be used both to introduce the unit and, even better, for review.
  • face Central Forces Introduction Lecture Notes

    face Lecture

    5 min.

    Central Forces Introduction Lecture Notes
    Central Forces 2022
  • assignment Potential energy of gas in gravitational field

    assignment Homework

    Potential energy of gas in gravitational field
    Potential energy Heat capacity Thermal and Statistical Physics 2020 Consider a column of atoms each of mass \(M\) at temperature \(T\) in a uniform gravitational field \(g\). Find the thermal average potential energy per atom. The thermal average kinetic energy is independent of height. Find the total heat capacity per atom. The total heat capacity is the sum of contributions from the kinetic energy and from the potential energy. Take the zero of the gravitational energy at the bottom \(h=0\) of the column. Integrate from \(h=0\) to \(h=\infty\). You may assume the gas is ideal.
  • assignment Mass-radius relationship for white dwarfs

    assignment Homework

    Mass-radius relationship for white dwarfs
    White dwarf Mass Density Energy Thermal and Statistical Physics 2020

    Consider a white dwarf of mass \(M\) and radius \(R\). The dwarf consists of ionized hydrogen, thus a bunch of free electrons and protons, each of which are fermions. Let the electrons be degenerate but nonrelativistic; the protons are nondegenerate.

    1. Show that the order of magnitude of the gravitational self-energy is \(-\frac{GM^2}{R}\), where \(G\) is the gravitational constant. (If the mass density is constant within the sphere of radius \(R\), the exact potential energy is \(-\frac53\frac{GM^2}{R}\)).

    2. Show that the order of magnitude of the kinetic energy of the electrons in the ground state is \begin{align} \frac{\hbar^2N^{\frac53}}{mR^2} \approx \frac{\hbar^2M^{\frac53}}{mM_H^{\frac53}R^2} \end{align} where \(m\) is the mass of an electron and \(M_H\) is the mas of a proton.

    3. Show that if the gravitational and kinetic energies are of the same order of magnitude (as required by the virial theorem of mechanics), \(M^{\frac13}R \approx 10^{20} \text{g}^{\frac13}\text{cm}\).

    4. If the mass is equal to that of the Sun (\(2\times 10^{33}g\)), what is the density of the white dwarf?

    5. It is believed that pulsars are stars composed of a cold degenerate gas of neutrons (i.e. neutron stars). Show that for a neutron star \(M^{\frac13}R \approx 10^{17}\text{g}^{\frac13}\text{cm}\). What is the value of the radius for a neutron star with a mass equal to that of the Sun? Express the result in \(\text{km}\).

  • assignment Electric Field and Charge

    assignment Homework

    Electric Field and Charge
    divergence charge density Maxwell's equations electric field Static Fields 2023 (4 years) Consider the electric field \begin{equation} \vec E(r,\theta,\phi) = \begin{cases} 0&\textrm{for } r<a\\ \frac{1}{4\pi\epsilon_0} \,\frac{Q}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ 0 & \textrm{for } r>b \\ \end{cases} \end{equation}
    1. Use step and/or delta functions to write this electric field as a single expression valid everywhere in space.
    2. Find a formula for the charge density that creates this electric field.
    3. Interpret your formula for the charge density, i.e. explain briefly in words where the charge is.
  • group Survivor Outer Space: A kinesthetic approach to (re)viewing center-of-mass

    group Small Group Activity

    10 min.

    Survivor Outer Space: A kinesthetic approach to (re)viewing center-of-mass
    Central Forces 2023 (3 years) A group of students, tethered together, are floating freely in outer space. Their task is to devise a method to reach a food cache some distance from their group.

Keywords
Mechanics Gravitational Force Gravitational Potential Energy Derivatives Introductory Physics
Learning Outcomes