Student handout: Energy and heat and entropy

Energy and Entropy 2021 (2 years)
This short lecture introduces the ideas required for Ice Calorimetry Lab or Microwave oven Ice Calorimetry Lab.

Today we will be melting ice using our microwave ovens. The purpose of this is to examine how energy affects matter. If we were in Weniger we would transfer our energy using a power supply and resistor, and you would be able to use a couple of multimeters to measure voltage and current and quantitatively determine how much energy was being dissipated per second. Instead we will use a microwave oven, and assume that its power is constant so we can treat time as a measure of the energy transfered.

In Math Bits, you have learned that the way amount internal energy changes relates to the work done: \begin{align} dU &= F_L dx_L + F_R dx_R \end{align} You made small changes in \(dx_L\) and \(dx_R\) and determined from that how much the energy changed.

Today we are gong to examine energy transfer in a backwards manner. When we transfer energy to something by heating, it's hard to measure the “thing we changed,” which was entropy. It is, however, possible in some cases to measure the amount of energy transfered by heating, and from that we can work backwards to find out how much the entropy changed.

The amount of energy transfered into a system by heating is generally written as \(Q\).*

An infinitesimal amount of energy transfered by heating is called \({\mathit{\unicode{273}}} Q\). Recall that \({\mathit{\unicode{273}}} \) indicates an inexact differential, which you can think of as a “small chunk” that is not the change of something. \({\mathit{\unicode{273}}} Q\) is not a small change in the amount of energy transfered by heating, but rather is a small amount of energy transfered by heating.

Heat here is analogous to left work \(F_Ldx_L\), which is also an amount of energy transfered to a system. So you might wonder what the “thing changing” is, which is analogous to \(dx_L\). A natural guess might be temperature, since you know that has something to do with heat, but we can see that temperature can't be the “thing that changes” when you heat something, because you can transfer energy by heating without changing the temperature.

Latent heat

A phase transition is when a material changes state of matter, as in melting or boiling. At most phase transitions (technically, abrupt phase transitions as you will learnin the Capstone), the temperature remains constant while the material is changing from one state to the other. So you know that as long as you have ice and water coexisting in equilibrium at one atmosphere of pressure, the temperature must be \(0^\circ\)C. Similarly, as long as water is boiling at one atmosphere of pressure, the temperature must be \(100^\circ\)C. In both of these cases, you can transfer energy to the system (as we will) by heating without changing the temperature! This relates to why I keep awkwardly saying “transfer energy to a system by heating” rather than just “heating a system” which means the same thing. We have deeply ingrained the idea that “heating” is synonymous with “raising the temperature,” which does not align with the physics meaning.

So now let me define the latent heat. The latent heat is the amount of energy that must be transfered to a material by heating in order to change it from one phase to another. The latent heat of fusion is the amount of energy required to melt a solid, and the latent heat of vaporization is the amount of energy required to turn a liquid into a gas. We will be measuring both of these for water.

A question you may ask is whether the latent heat is extensive or intensive. Technically the latent heat is extensive, since if you have more material then more energy is required to melt/boil it. However, when you hear latent heat quoted, it is almost always the specific latent heat, which is the energy transfer by heating required per unit of mass. It can be confusing that people use the same words to refer to both quantities. Fortunately, dimensional checking can always give you a way to verify which is being referred to. If \(L\) is an energy per mass, then it must be the specific latent heat, while if it is an energy, then it must be the latent heat.

Heat capacity and specific heat

The heat capacity is the amount of energy transfer required per temperature to raise the temperature of a system. If we hold the pressure fixed (as in our experiment) we can write this as: \begin{align} {\mathit{\unicode{273}}} Q &= C_p dT \end{align} where \(C_p\) is the heat capacity at fixed pressure. You might think to rewrite this expression as a derivative, but we can't do that since the energy transfered by heating is not a state function.

Note that the heat capacity, like the latent heat, is an extensive quantity. The specific heat is the the heat capacity per unit mass, which is an intensive quantity that we can consider a property of a material independently of the quantity of that material.

I'll just mention as an aside that the term “heat capacity” is another one of those unfortunate phrases that reflect the inaccurate idea that heat is a property of a system.


Finally, we can get to entropy. Entropy is the “thing that changes” when you transfer energy by heating. I'll just give this away: \begin{align} {\mathit{\unicode{273}}} Q &= TdS \end{align} where this equation is only true if you make the change quasistatically (see another lecture). This allows us to find the change in entropy if we know how much energy was transfered by heating, and the temperature in the process. \begin{align} \Delta S &= \int \frac1T {\mathit{\unicode{273}}} Q \end{align} where again, we need to know the temperature as we add heat.

  • group Using $pV$ and $TS$ Plots

    group Small Group Activity

    30 min.

    Using \(pV\) and \(TS\) Plots
    Energy and Entropy 2021 (2 years)

    work heat first law energy

    Students work out heat and work for rectangular paths on \(pV\) and \(TS\) plots. This gives with computing heat and work, applying the First Law, and recognizing that internal energy is a state function, which cannot change after a cyclic process.
  • assignment Heat shields

    assignment Homework

    Heat shields
    Stefan-Boltzmann blackbody radiation Thermal and Statistical Physics 2020 A black (nonreflective) sheet of metal at high temperature \(T_h\) is parallel to a cold black sheet of metal at temperature \(T_c\). Each sheet has an area \(A\) which is much greater than the distance between them. The sheets are in vacuum, so energy can only be transferred by radiation.
    1. Solve for the net power transferred between the two sheets.

    2. A third black metal sheet is inserted between the other two and is allowed to come to a steady state temperature \(T_m\). Find the temperature of the middle sheet, and solve for the new net power transferred between the hot and cold sheets. This is the principle of the heat shield, and is part of how the James Web telescope shield works.
    3. Optional: Find the power through an \(N\)-layer sandwich.

  • assignment Vapor pressure equation

    assignment Homework

    Vapor pressure equation
    phase transformation Clausius-Clapeyron Thermal and Statistical Physics 2020 Consider a phase transformation between either solid or liquid and gas. Assume that the volume of the gas is way bigger than that of the liquid or solid, such that \(\Delta V \approx V_g\). Furthermore, assume that the ideal gas law applies to the gas phase. Note: this problem is solved in the textbook, in the section on the Clausius-Clapeyron equation.
    1. Solve for \(\frac{dp}{dT}\) in terms of the pressure of the vapor and the latent heat \(L\) and the temperature.

    2. Assume further that the latent heat is roughly independent of temperature. Integrate to find the vapor pressure itself as a function of temperature (and of course, the latent heat).

  • assignment Ice calorimetry lab questions

    assignment Homework

    Ice calorimetry lab questions
    This question is about the lab we did in class: Ice Calorimetry Lab.
    1. Plot your data I Plot the temperature versus total energy added to the system (which you can call \(Q\)). To do this, you will need to integrate the power. Discuss this curve and any interesting features you notice on it.
    2. Plot your data II Plot the heat capacity versus temperature. This will be a bit trickier. You can find the heat capacity from the previous plot by looking at the slope. \begin{align} C_p &= \left(\frac{\partial Q}{\partial T}\right)_p \end{align} This is what is called the heat capacity, which is the amount of energy needed to change the temperature by a given amount. The \(p\) subscript means that your measurement was made at constant pressure. This heat capacity is actually the total heat capacity of everything you put in the calorimeter, which includes the resistor and thermometer.
    3. Specific heat From your plot of \(C_p(T)\), work out the heat capacity per unit mass of water. You may assume the effect of the resistor and thermometer are negligible. How does your answer compare with the prediction of the Dulong-Petit law?
    4. Latent heat of fusion What did the temperature do while the ice was melting? How much energy was required to melt the ice in your calorimeter? How much energy was required per unit mass? per molecule?
    5. Entropy of fusion The change in entropy is easy to measure for a reversible isothermal process (such as the slow melting of ice), it is just \begin{align} \Delta S &= \frac{Q}{T} \end{align} where \(Q\) is the energy thermally added to the system and \(T\) is the temperature in Kelvin. What is was change in the entropy of the ice you melted? What was the change in entropy per molecule? What was the change in entropy per molecule divided by Boltzmann's constant?
    6. Entropy for a temperature change Choose two temperatures that your water reached (after the ice melted), and find the change in the entropy of your water. This change is given by \begin{align} \Delta S &= \int \frac{{\mathit{\unicode{273}}} Q}{T} \\ &= \int_{t_i}^{t_f} \frac{P(t)}{T(t)}dt \end{align} where \(P(t)\) is the heater power as a function of time and \(T(t)\) is the temperature, also as a function of time.
  • biotech Microwave oven Ice Calorimetry Lab

    biotech Experiment

    60 min.

    Microwave oven Ice Calorimetry Lab
    Energy and Entropy 2021 (2 years)

    heat entropy water ice thermodynamics

    In this remote-friendly activity, students use a microwave oven (and optionally a thermometer) to measure the latent heat of melting for water (and optionally the heat capacity). From these they compute changes in entropy. See also Ice Calorimetry Lab.
  • assignment Heat of vaporization of ice

    assignment Homework

    Heat of vaporization of ice
    Vaporization Heat Thermal and Statistical Physics 2020 The pressure of water vapor over ice is 518 Pa at \(-2^\circ\text{C}\). The vapor pressure of water at its triple point is 611 Pa, at 0.01\(^\circ\text{C}\) (see Estimate in \(\text{J mol}^{-1}\) the heat of vaporization of ice just under freezing. How does this compare with the heat of vaporization of water?
  • group Ice Calorimetry Lab

    group Small Group Activity

    60 min.

    Ice Calorimetry Lab

    heat entropy water ice

    The students will set up a Styrofoam cup with heating element and a thermometer in it. They will measure the temperature as a function of time, and thus the energy transferred from the power supply, from which they compute changes in entropy.
  • assignment Bottle in a Bottle 2

    assignment Homework

    Bottle in a Bottle 2
    heat entropy ideal gas Energy and Entropy 2021 (2 years)

    Consider the bottle in a bottle problem in a previous problem set, summarized here.

    A small bottle of helium is placed inside a large bottle, which otherwise contains vacuum. The inner bottle contains a slow leak, so that the helium leaks into the outer bottle. The inner bottle contains one tenth the volume of the outer bottle, which is insulated.

    The volume of the small bottle is 0.001 m23 and the volume of the big bottle is 0.01 m3. The initial state of the gas in the small bottle was \(p=106\) Pa and its temperature \(T=300\) K. Approximate the helium gas as an ideal gas of equations of state \(pV=Nk_BT\) and \(U=\frac32 Nk_BT\).

    1. How many molecules of gas does the large bottle contain? What is the final temperature of the gas?

    2. Compute the integral \(\int \frac{{\mathit{\unicode{273}}} Q}{T}\) and the change of entropy \(\Delta S\) between the initial state (gas in the small bottle) and the final state (gas leaked in the big bottle).

    3. Discuss your results.

  • assignment Isothermal/Adiabatic Compressibility

    assignment Homework

    Isothermal/Adiabatic Compressibility
    Energy and Entropy 2021 (2 years)

    The isothermal compressibility is defined as \begin{equation} K_{T}=-\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_{T} \end{equation} \(K_T\) is be found by measuring the fractional change in volume when the the pressure is slightly changed with the temperature held constant. In contrast, the adiabatic compressibility is defined as \begin{equation} K_{S}=-\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_{S} \end{equation} and is measured by making a slight change in pressure without allowing for any heat transfer. This is the compressibility, for instance, that would directly affect the speed of sound. Show that \begin{equation} \frac{K_{T}}{K_{S}} = \frac{C_{p}}{C_{V}} \end{equation} Where the heat capacities at constant pressure and volume are given by \begin{align} C_{p} &= T \left(\frac{\partial S}{\partial T}\right)_{p} \\ C_{V} &= T \left(\frac{\partial S}{\partial T}\right)_{V} \end{align}

  • assignment Calculation of $\frac{dT}{dp}$ for water

    assignment Homework

    Calculation of \(\frac{dT}{dp}\) for water
    Clausius-Clapeyron Thermal and Statistical Physics 2020 Calculate based on the Clausius-Clapeyron equation the value of \(\frac{dT}{dp}\) near \(p=1\text{atm}\) for the liquid-vapor equilibrium of water. The heat of vaporization at \(100^\circ\text{C}\) is \(2260\text{ J g}^{-1}\). Express the result in kelvin/atm.

Learning Outcomes