Student handout: Heat and Temperature of Water Vapor (Remote)

In this introduction to heat capacity, students determine a derivative that indicates how much the internal energy changes as the temperature changes when volume is held constant.
What students learn
  • Heat capacity at constant volume relates to changes in internal energy, i.e. \({\mathit{\unicode{273}}} Q = dU\).
  • A conceptual definition of heat capacity at constant volume is the derivative of internal energy with respect to temperature without changing the volume.
  • Not all derivatives are slopes but they are all ratios of small changes.
  • Heat capacity at constant volume depends on the value of the volume. optional: Heat capacity at constant pressure is NOT \(\left(dU/dT\right)_p\) - you have to account for work done.
  • face Energy and heat and entropy

    face Lecture

    30 min.

    Energy and heat and entropy
    Energy and Entropy Fall 2020 Energy and Entropy Fall 2021

    latent heat heat capacity internal energy entropy

    This short lecture introduces the ideas required for Ice Calorimetry Lab or Microwave oven Ice Calorimetry Lab.
  • group Covariation in Thermal Systems

    group Small Group Activity

    30 min.

    Covariation in Thermal Systems

    Thermo Multivariable Functions

    Students consider how changing the volume of a system changes the internal energy of the system. Students use plastic graph models to explore these functions.
  • group Changes in Internal Energy (Remote)

    group Small Group Activity

    30 min.

    Changes in Internal Energy (Remote)

    Thermo Internal Energy 1st Law of Thermodynamics

    Students consider the change in internal energy during three different processes involving a container of water vapor on a stove. Using the 1st Law of Thermodynamics, students reason about how the internal energy would change and then compare this prediction with data from NIST presented as a contour plot.
  • assignment Ice calorimetry lab questions

    assignment Homework

    Ice calorimetry lab questions
    This question is about the lab we did in class: Ice Calorimetry Lab.
    1. Plot your data I Plot the temperature versus total energy added to the system (which you can call \(Q\)). To do this, you will need to integrate the power. Discuss this curve and any interesting features you notice on it.
    2. Plot your data II Plot the heat capacity versus temperature. This will be a bit trickier. You can find the heat capacity from the previous plot by looking at the slope. \begin{align} C_p &= \left(\frac{\partial Q}{\partial T}\right)_p \end{align} This is what is called the heat capacity, which is the amount of energy needed to change the temperature by a given amount. The \(p\) subscript means that your measurement was made at constant pressure. This heat capacity is actually the total heat capacity of everything you put in the calorimeter, which includes the resistor and thermometer.
    3. Specific heat From your plot of \(C_p(T)\), work out the heat capacity per unit mass of water. You may assume the effect of the resistor and thermometer are negligible. How does your answer compare with the prediction of the Dulong-Petit law?
    4. Latent heat of fusion What did the temperature do while the ice was melting? How much energy was required to melt the ice in your calorimeter? How much energy was required per unit mass? per molecule?
    5. Entropy of fusion The change in entropy is easy to measure for a reversible isothermal process (such as the slow melting of ice), it is just \begin{align} \Delta S &= \frac{Q}{T} \end{align} where \(Q\) is the energy thermally added to the system and \(T\) is the temperature in Kelvin. What is was change in the entropy of the ice you melted? What was the change in entropy per molecule? What was the change in entropy per molecule divided by Boltzmann's constant?
    6. Entropy for a temperature change Choose two temperatures that your water reached (after the ice melted), and find the change in the entropy of your water. This change is given by \begin{align} \Delta S &= \int \frac{{\mathit{\unicode{273}}} Q}{T} \\ &= \int_{t_i}^{t_f} \frac{P(t)}{T(t)}dt \end{align} where \(P(t)\) is the heater power as a function of time and \(T(t)\) is the temperature, also as a function of time.
  • assignment Power from the Ocean

    assignment Homework

    Power from the Ocean
    heat engine efficiency Energy and Entropy Fall 2020 Energy and Entropy Fall 2021

    It has been proposed to use the thermal gradient of the ocean to drive a heat engine. Suppose that at a certain location the water temperature is \(22^\circ\)C at the ocean surface and \(4^{o}\)C at the ocean floor.

    1. What is the maximum possible efficiency of an engine operating between these two temperatures?

    2. If the engine is to produce 1 GW of electrical power, what minimum volume of water must be processed every second? Note that the specific heat capacity of water \(c_p = 4.2\) Jg\(^{-1}\)K\(^{-1}\) and the density of water is 1 g cm\(^{-3}\), and both are roughly constant over this temperature range.

  • assignment Isothermal/Adiabatic Compressibility

    assignment Homework

    Isothermal/Adiabatic Compressibility
    Energy and Entropy Fall 2020 Energy and Entropy Fall 2021

    The isothermal compressibility is defined as \begin{equation} K_{T}=-\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_{T} \end{equation} \(K_T\) is be found by measuring the fractional change in volume when the the pressure is slightly changed with the temperature held constant. In contrast, the adiabatic compressibility is defined as \begin{equation} K_{S}=-\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_{S} \end{equation} and is measured by making a slight change in pressure without allowing for any heat transfer. This is the compressibility, for instance, that would directly affect the speed of sound. Show that \begin{equation} \frac{K_{T}}{K_{S}} = \frac{C_{p}}{C_{V}} \end{equation} Where the heat capacities at constant pressure and volume are given by \begin{align} C_{p} &= T \left(\frac{\partial S}{\partial T}\right)_{p} \\ C_{V} &= T \left(\frac{\partial S}{\partial T}\right)_{V} \end{align}

  • group Thermodynamic States (Remote)

    group Small Group Activity

    30 min.

    Thermodynamic States (Remote)

    Thermo

    Little is needed. Some students might be bothered by thinking about entropy if it hasn't been mentioned at all in class. Try doing this activity as a follow-up to the “Changes in Internal Energy" about the first law of thermodynamics.
  • group Ice Calorimetry Lab

    group Small Group Activity

    60 min.

    Ice Calorimetry Lab

    heat entropy water ice

    The students will set up a Styrofoam cup with heating element and a thermometer in it. They will measure the temperature as a function of time, and thus the energy transferred from the power supply.
  • biotech Microwave oven Ice Calorimetry Lab

    biotech Experiment

    60 min.

    Microwave oven Ice Calorimetry Lab
    Energy and Entropy Fall 2020 Energy and Entropy Fall 2021

    heat entropy water ice thermodynamics

    The students will set up a Styrofoam cup with heating element and a thermometer in it. They will measure the temperature as a function of time, and thus the energy transferred from the power supply.
  • assignment Bottle in a Bottle 2

    assignment Homework

    Bottle in a Bottle 2
    heat entropy ideal gas Energy and Entropy Fall 2020 Energy and Entropy Fall 2021

    Consider the bottle in a bottle problem in a previous problem set, summarized here.

    A small bottle of helium is placed inside a large bottle, which otherwise contains vacuum. The inner bottle contains a slow leak, so that the helium leaks into the outer bottle. The inner bottle contains one tenth the volume of the outer bottle, which is insulated.

    The volume of the small bottle is 0.001 m23 and the volume of the big bottle is 0.01 m3. The initial state of the gas in the small bottle was \(p=106\) Pa and its temperature \(T=300\) K. Approximate the helium gas as an ideal gas of equations of state \(pV=Nk_BT\) and \(U=\frac32 Nk_BT\).

    1. How many molecules of gas does the large bottle contain? What is the final temperature of the gas?

    2. Compute the integral \(\int \frac{{\mathit{\unicode{273}}} Q}{T}\) and the change of entropy \(\Delta S\) between the initial state (gas in the small bottle) and the final state (gas leaked in the big bottle).

    3. Discuss your results.

Heat & Temperature of Water Vapor

A pressure cooker is an enclosed pot that expels air and traps water vapor, which increases the internal pressure. This in turn raises the boiling point of water and allows food to cook at high temperatures.


Imagine you have a large industrial pressure cooker that holds 1 kg of water vapor. You would like to know how responsive the system is to changes in temperature. To do this, you need to determine a characteristic rate: how much heat is needed to change the temperature by a small amount.


The graph shows internal energy and volume contours plotted on temperature and pressure axes.


Internal Energy 2cm \(\rightarrow\) 170. kJ
Temperature 2cm \(\rightarrow\) 70 K
Pressure 2cm \(\rightarrow\) 128000 Pa
Entropy Contours Curves \(\rightarrow\) 0.33 kJ/K apart
Volume Contours Line Segments \(\rightarrow\) 0.7 m3 apart


Estimate: Use the graph to determine this temperature-responsiveness when the volume is held fixed. The initial state of the system corresponds to the black square. Describe your process.


Explain: Why does it matter that you are holding volume constant in the above estimate?


Explore: Does the value of your estimate depend on the value of the volume?


Learning Outcomes