## Student handout: Outer Product of a Vector on Itself

Quantum Fundamentals 2023 (2 years)
Students compute the outer product of a vector on itself to product a projection operator. Students discover that projection operators are idempotent (square to themselves) and that a complete set of outer products of an orthonormal basis is the identity (a completeness relation).
What students learn
• Outer products yield projection operators
• Projection operators are idempotes (they square to themselves)
• A complete set of outer products of an orthonormal basis is the identity (a completeness relation)
Outer Product of a Vector on Itself
1. For one of the vectors below, what matrix is the outer product of the vector on itself (i.e., $\left|{v_1}\right\rangle \left\langle {v_1}\right|$)? All the vectors are written in the $S_z$ basis. \begin{align*} \left|{+}\right\rangle &\doteq \begin{bmatrix} 1\\0 \end{bmatrix} &\left|{-}\right\rangle &\doteq \begin{bmatrix} 0\\1 \end{bmatrix} &\left|{+}\right\rangle _x &\doteq \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\1 \end{bmatrix} \\[10pt] \left|{-}\right\rangle _x &\doteq \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-1 \end{bmatrix} &\left|{+}\right\rangle _y &\doteq \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\i \end{bmatrix} &\left|{-}\right\rangle _y &\doteq \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-i \end{bmatrix}\\[10pt] \left|{v_7}\right\rangle &\doteq \frac{1}{5}\begin{bmatrix} 3\\4 \end{bmatrix} &\left|{v_8}\right\rangle &\doteq \frac{1}{5}\begin{bmatrix} 4\\-3 \end{bmatrix} &\left|{v_9}\right\rangle &\doteq \begin{bmatrix} a\\be^{i\phi} \end{bmatrix}\\[10pt] \left|{1}\right\rangle _x &\doteq \frac{1}{\sqrt{2}}\begin{bmatrix} \frac{1}{\sqrt{2}}\\1\\\frac{1}{\sqrt{2}} \end{bmatrix} &\left|{0}\right\rangle _x &\doteq \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\0\\-1 \end{bmatrix} &\left|{-1}\right\rangle _x &\doteq \frac{1}{\sqrt{2}}\begin{bmatrix} \frac{1}{\sqrt{2}}\\-1\\\frac{1}{\sqrt{2}} \end{bmatrix} \end{align*}
2. What is the transformation caused by your outer product?

3. What is the determinant of your outer product?

4. What is the square of your outer product?

Bonus: What happens when you add the outer products for a complete orthonormal basis?

Bonus 2: How would you answer questions (2) and (4) staying purely in Dirac bra-ket notation?

Keywords

Learning Outcomes