format_list_numbered Sequence

Arms Sequence for Complex Numbers and Quantum States
“Arms” is an engaging representation of complex numbers in which students use their left arms to geometrically represent numbers in the complex plane (an Argand diagram). The sequence starts with pure math activities in which students represent a single complex number (using prompts in both rectangular and exponential forms), demonstrate multiplication of complex numbers in exponential form, and act out a number of different linear transformation on pairs of complex numbers. Later activities, relevant to spin 1/2 systems in quantum mechanics, explore overall phases, relative phases, and time dependence. These activities can be combined and sequenced in many different ways; see the Instructor's Guide for the second activity for ideas about how to introduce the Arms representation the first time you use it.

accessibility_new Kinesthetic

10 min.

Spin 1/2 with Arms
Quantum Fundamentals 2023 (2 years)

Quantum State Vectors Complex Numbers Spin 1/2 Arms Representation

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, use their left arms to represent each component in a two-state quantum spin 1/2 system. Reinforces the idea that quantum states are complex valued vectors. Students make connections between Dirac, matrix, and Arms representation.

group Small Group Activity

60 min.

Going from Spin States to Wavefunctions
Quantum Fundamentals 2023 (2 years)

Wavefunctions quantum states probability amplitude histograms matrix notation of quantum states Arms representation

Arms Sequence for Complex Numbers and Quantum States

Completeness Relations

Students review using the Arms representation to represent states for discrete quantum systems and connecting the Arms representation to histogram and matrix representation. The student then extend the Arms representation to begin exploring the continuous position basis.

accessibility_new Kinesthetic

10 min.

Using Arms to Visualize Complex Numbers (MathBits)
Lie Groups and Lie Algebras 23 (4 years)

arms complex numbers Argand diagram complex plane rectangular form exponential form complex conjugate math

Arms Sequence for Complex Numbers and Quantum States

Students move their left arm in a circle to trace out the complex plane (Argand diagram). They then explore the rectangular and exponential representations of complex numbers by using their left arm to show given complex numbers on the complex plane. Finally they enact multiplication of complex numbers in exponential form and complex conjugation.

accessibility_new Kinesthetic

30 min.

Using Arms to Visualize Transformations of Complex Two-Component Vectors (MathBits)
Quantum Fundamentals 2021

arms complex numbers phase rotation reflection math

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, represent two component complex vectors with their left arms. Through a short series of instructor led prompts, students move their left arms to show how various linear transformations affect each complex component.

accessibility_new Kinesthetic

10 min.

Using Arms to Represent Overall and Relative Phase in Spin 1/2 Systems
Quantum Fundamentals 2023 (2 years)

quantum states complex numbers arms Bloch sphere relative phase overall phase

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, use the Arms representations to represent states of spin 1/2 system. Through a short series of instructor-led prompts, students explore the difference between overall phase (which does NOT distinguish quantum states) and relative phase (which does distinguish quantum states).

accessibility_new Kinesthetic

10 min.

Using Arms to Represent Time Dependence in Spin 1/2 Systems
Quantum Fundamentals 2023 (2 years)

Arms Representation quantum states time dependence Spin 1/2

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, use their left arms to demonstrate time evolution in spin 1/2 quantum systems.

group Small Group Activity

5 min.

Fourier Transform of the Delta Function
Periodic Systems 2022

Fourier Transforms and Wave Packets

Students calculate the Fourier transform of the Dirac delta function.

group Small Group Activity

10 min.

Using Tinker Toys to Represent Spin 1/2 Quantum Systems

spin 1/2 eigenstates quantum states

Arms Sequence for Complex Numbers and Quantum States

Students use Tinker Toys to represent each component in a two-state quantum spin system in all three standard bases (\(x\), \(y\), and \(z\)). Through a short series of instructor-led prompts, students explore the difference between overall phase (which does NOT change the state of the system) and relative phase (which does change the state of the system). This activity is optional in the Arms Sequence Arms Sequence for Complex Numbers and Quantum States.