face Lecture

120 min.

Fermi and Bose gases
These lecture notes from week 7 of Thermal and Statistical Physics apply the grand canonical ensemble to fermion and bosons ideal gasses. They include a few small group activities.
Consider one particle confined to a cube of side \(L\); the concentration in effect is \(n=L^{-3}\). Find the kinetic energy of the particle when in the ground state. There will be a value of the concentration for which this zero-point quantum kinetic energy is equal to the temperature \(kT\). (At this concentration the occupancy of the lowest orbital is of the order of unity; the lowest orbital always has a higher occupancy than any other orbital.) Show that the concentration \(n_0\) thus defined is equal to the quantum concentration \(n_Q\) defined by (63): \begin{equation} n_Q \equiv \left(\frac{MkT}{2\pi\hbar^2}\right)^{\frac32} \end{equation} within a factor of the order of unity.
  • Found in: Thermal and Statistical Physics course(s)

face Lecture

30 min.

Review of Thermal Physics
These are notes, essentially the equation sheet, from the final review session for Thermal and Statistical Physics.

face Lecture

120 min.

Ideal Gas
These notes from week 6 of Thermal and Statistical Physics cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.

face Lecture

120 min.

Phase transformations
These lecture notes from the ninth week of Thermal and Statistical Physics cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.
These notes, from the third week of Thermal and Statistical Physics cover the canonical ensemble and Helmholtz free energy. They include a number of small group activities.