group Small Group Activity

30 min.

\(|\pm\rangle\) Forms an Orthonormal Basis
Quantum Fundamentals 2023 (3 years)

Cartesian Basis $S_z$ basis completeness normalization orthogonality basis

Completeness Relations

Student explore the properties of an orthonormal basis using the Cartesian and \(S_z\) bases as examples.

assignment Homework

Completeness Relation Change of Basis
change of basis spin half completeness relation dirac notation

Completeness Relations

Quantum Fundamentals 2023 (3 years)
  1. Given the polar basis kets written as a superposition of Cartesian kets \begin{eqnarray*} \left|{\hat{s}}\right\rangle &=& \cos\phi \left|{\hat{x}}\right\rangle + \sin\phi \left|{\hat{y}}\right\rangle \\ \left|{\hat{\phi}}\right\rangle &=& -\sin\phi \left|{\hat{x}}\right\rangle + \cos\phi \left|{\hat{y}}\right\rangle \end{eqnarray*}

    Find the following quantities: \[\left\langle {\hat{x}}\middle|{\hat{s}}\right\rangle ,\quad \left\langle {\hat{y}}\middle|{{\hat{s}}}\right\rangle ,\quad \left\langle {\hat{x}}\middle|{\hat{\phi}}\right\rangle ,\quad \left\langle {\hat{y}}\middle|{\hat{\phi}}\right\rangle \]

  2. Given a vector written in the polar basis \[\left|{\vec{v}}\right\rangle = a\left|{\hat{s}}\right\rangle + b\left|{\hat{\phi}}\right\rangle \] where \(a\) and \(b\) are known. Find coefficients \(c\) and \(d\) such that \[\left|{\vec{v}}\right\rangle = c\left|{\hat{x}}\right\rangle + d\left|{\hat{y}}\right\rangle \] Do this by using the completeness relation: \[\left|{\hat{x}}\right\rangle \left\langle {\hat{x}}\right| + \left|{\hat{y}}\right\rangle \left\langle {\hat{y}}\right| = 1\]
  3. Using a completeness relation, change the basis of the spin-1/2 state \[\left|{\Psi}\right\rangle = g\left|{+}\right\rangle + h\left|{-}\right\rangle \] into the \(S_y\) basis. In otherwords, find \(j\) and \(k\) such that \[\left|{\Psi}\right\rangle = j\left|{+}\right\rangle _y + k\left|{-}\right\rangle _y\]

keyboard Computational Activity

120 min.

Sinusoidal basis set
Computational Physics Lab II 2022

inner product wave function quantum mechanics particle in a box

Students compute inner products to expand a wave function in a sinusoidal basis set. This activity introduces the inner product for wave functions, and the idea of approximating a wave function using a finite set of basis functions.

assignment Homework

Line Sources Using Coulomb's Law
Static Fields 2023 (6 years)
  1. Find the electric field around a finite, uniformly charged, straight rod, at a point a distance \(s\) straight out from the midpoint, starting from Coulomb's Law.
  2. Find the electric field around an infinite, uniformly charged, straight rod, starting from the result for a finite rod.

keyboard Computational Activity

120 min.

Position operator
Computational Physics Lab II 2022

quantum mechanics operator matrix element particle in a box eigenfunction

Students find matrix elements of the position operator \(\hat x\) in a sinusoidal basis. This allows them to express this operator as a matrix, which they can then numerically diagonalize and visualize the eigenfunctions.

group Small Group Activity

120 min.

Box Sliding Down Frictionless Wedge
Theoretical Mechanics (4 years)

Lagrangian Mechanics Generalized Coordinates Special Cases

Students solve for the equations of motion of a box sliding down (frictionlessly) a wedge, which itself slides on a horizontal surface, in order to answer the question "how much time does it take for the box to slide a distance \(d\) down the wedge?". This activities highlights finding kinetic energies when the coordinate system is not orthonormal and checking special cases, functional behavior, and dimensions.

group Small Group Activity

30 min.

Vector Differential--Curvilinear
Vector Calculus II 23 (9 years)

vector calculus coordinate systems curvilinear coordinates

Integration Sequence

In this small group activity, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in different coordinate systems (cartesian, cylindrical, spherical).

Use Vector Differential--Rectangular as an introduction. This activity can be done simultaneously with Pineapples and Pumpkins where students or the instructor cut volume elements out of pineapples and/or pumpkins to show the geometry.