title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Problem

30 min.

##### Completeness Relation Change of Basis
Students practice using inner products to find the components of the cartesian basis vectors in the polar basis and vice versa. Then, students use a completeness relation to change bases or cartesian/polar bases and for different spin bases.
• Found in: Quantum Fundamentals course(s) Found in: Completeness Relations sequence(s)

Small Group Activity

30 min.

##### Completeness Relations
Students use a completeness relations to write hydrogen atoms states in the energy and position bases.

Small Group Activity

30 min.

##### $|\pm\rangle$ Forms an Orthonormal Basis
Student explore the properties of an orthonormal basis using the Cartesian and $S_z$ bases as examples.
• Found in: Quantum Fundamentals course(s) Found in: Completeness Relations sequence(s)

Problem

5 min.

##### Matrix Elements and Completeness Relations
Students use completeness relations to write a matrix element of a spin component in a different basis.
• Found in: Quantum Fundamentals course(s) Found in: Completeness Relations sequence(s)

Problem

##### Diagonalization Part II
First complete the problem Diagonalization. In that notation:
1. Find the matrix $S$ whose columns are $|\alpha\rangle$ and $|\beta\rangle$. Show that $S^{\dagger}=S^{-1}$ by calculating $S^{\dagger}$ and multiplying it by $S$. (Does the order of multiplication matter?)
2. Calculate $B=S^{-1} C S$. How is the matrix $E$ related to $B$ and $C$? The transformation that you have just done is an example of a “change of basis”, sometimes called a “similarity transformation.” When the result of a change of basis is a diagonal matrix, the process is called diagonalization.
• Found in: Quantum Fundamentals course(s)

Kinesthetic

10 min.

##### Curvilinear Basis Vectors
Students use their arms to depict (sequentially) the different cylindrical and spherical basis vectors at the location of their shoulder (seen in relation to a specified origin of coordinates: either a set of axes hung from the ceiling of the room or perhaps a piece of furniture or a particular corner of the room).
• Found in: Static Fields, Central Forces, AIMS Maxwell, Surfaces/Bridge Workshop, Problem-Solving course(s) Found in: Geometry of Vector Fields Sequence, Curvilinear Coordinate Sequence sequence(s)

Small Group Activity

30 min.

##### Change of Variables

Consider the region $D$ in the $xy$-plane shown below, which is bounded by $u=9 \qquad u=36 \qquad v=1 \qquad v=4$ where $u=xy \qquad v={y\over x}$ If you want to determine $x$ and $y$ as functions of $u$ and $v$, consider $uv$ and $u/v$.

• List as many methods as you can think of for finding the area of the given region.

It is enough to refer to the methods by name or describe them briefly.

• For at least 3 of these methods, give explicitly the formulas you would use to find the area.

You must put limits on your integrals, but you do not need to evaluate them.

• Using any 2 of these methods, find the area.

One of these should be a method we have learned recently.

• Now consider the following integral over the same region $D$:

$\int\!\!\int_D {y\over x} \>\>dA$

• Which of the above methods can you use to do this integral?
• Do the integral.

#### Main ideas

• There are many ways to solve this problem!
• Using Jacobians (and inverse Jacobians)

#### Prerequisites

• Surface integrals
• Jacobians
• Green's/Stokes' Theorem

#### Warmup

Perhaps a discussion of single and double integral techniques for solving this problem.

#### Props

• whiteboards and pens

#### Wrapup

This is a good conclusion to the course, as it reviews many integration techniques. We emphasize that (2-dimensional) change-of-variable problems are a special case of surface integrals.

Here are some of the methods one could use to do these integrals:

• change of variables (at least 2 ways)
• Area Corollary to Green's Theorem (at least 2 ways)
• ordinary single integral (at least 2 ways)
• ordinary double integral (at least 2 ways)
• surface integral

### Details

#### In the Classroom

• Some students will want to simply use Jacobian formulas; encourage such students to try to solve this problem both by computing $\frac{\partial(x,y)}{\partial(u,v)}$ and by computing $\frac{\partial(u,v)}{\partial(x,y)}$.
• Other students will want to work directly with $d\boldsymbol{\vec{r}}_1$ and $d\boldsymbol{\vec{r}}_2$. This works fine if one first solves for $x$ and $y$ in terms of $u$ and $v$.
• Students who compute $d\boldsymbol{\vec{r}}_1$ and $d\boldsymbol{\vec{r}}_2$ directly can easily get confused, since they may try to eliminate $x$ or $y$, rather than $u$ or $v$.

Along the curve $v=\hbox{constant}$, one has $dy=v\,dx$, so that $d\boldsymbol{\vec{r}}_1 = dx\,\boldsymbol{\hat{x}} + dy\,\boldsymbol{\hat{y}} = (\boldsymbol{\hat{x}} + v\,\boldsymbol{\hat{y}})\,dx$, which some students will want to write in terms of $x$ alone. But one needs to express this in terms of $du$! This can be done using $du = x\,dy + y\,dx = x (v\,dx) + y\,dx = 2y\,dx$, so that $d\boldsymbol{\vec{r}}_1 = (\boldsymbol{\hat{x}} + v\,\boldsymbol{\hat{y}}) \,\frac{du}{2y}$. A similar argument leads to $d\boldsymbol{\vec{r}}_2 = (-\frac{1}{v}\,\boldsymbol{\hat{x}}+\boldsymbol{\hat{y}})\,\frac{x\,dv}{2}$ for $u=\hbox{constant}$, so that $d\boldsymbol{\vec{S}} = d\boldsymbol{\vec{r}}_1\times d\boldsymbol{\vec{r}}_2 = \boldsymbol{\hat{z}} \,\frac{x}{2y}\,du\,dv = \boldsymbol{\hat{z}} \,{du\,dv\over2v}$. This calculation can be done without solving for $x$ and $y$, provided one recognizes $v$ in the penultimate expression.

Emphasize that one must choose parameters, both on the region, and on each curve, and that $u$ and $v$ are chosen to make the limits easy.

• Take time before the activity to gauge students' recollection of single variable techniques and the Jacobian. After the activity, be sure to set up more than one approach. People will be fine after the first couple of steps but shouldn't leave class feeling stuck.

#### Subsidiary ideas

• Review of Green's Theorem
• Review of single integral techniques
• Review of double integral techniques

#### Enrichment

• Discuss the 3-dimensional case, perhaps relating it to volume integrals.
• Found in: Vector Calculus II course(s)

Small Group Activity

30 min.

##### Quantifying Change
In this activity, students will explore how to calculate a derivative from measured data. Students should have prior exposure to differential calculus. At the start of the activity, orient the students to the contour plot - it's busy.
• Found in: None course(s)

Computational Activity

120 min.

##### Sinusoidal basis set
Students compute inner products to expand a wave function in a sinusoidal basis set. This activity introduces the inner product for wave functions, and the idea of approximating a wave function using a finite set of basis functions.
• Found in: Computational Physics Lab II course(s) Found in: Computational wave function inner products sequence(s)

Small Group Activity

30 min.

##### Representations for Finding Components
In this small group activity, students draw components of a vector in Cartesian and polar bases. Students then write the components of the vector in these bases as both dot products with unit vectors and as bra/kets with basis bras.
• Found in: Quantum Fundamentals, Static Fields, None course(s)

Lecture

30 min.

##### Determining $|\pm_x\rangle$ and $|\pm_y\rangle$ in the $S_z$ basis

Lecture about finding $\left|{\pm}\right\rangle _x$ and then $\left|{\pm}\right\rangle _y$. There are two conventional choices to make: relative phase for $_x\left\langle {+}\middle|{-}\right\rangle _x$ and $_y\left\langle {+}\middle|{+}\right\rangle _x$.

So far, we've talked about how to calculate measurement probabilities if you know the input and output quantum states using the probability postulate:

$\mathcal{P} = | \left\langle {\psi_{out}}\middle|{\psi_{in}}\right\rangle |^2$

Now we're going to do this process in reverse.

I want to be able to relate the output states of Stern-Gerlach analyzers oriented in different directions to each other (like $\left|{\pm}\right\rangle _x$ and $\left|{\pm}\right\rangle _x$ to $\left|{\pm}\right\rangle$). Since $\left|{\pm}\right\rangle$ forms a basis, I can write any state for a spin-1/2 system as a linear combination of those states, including these special states.

I'll start with $\left|{+}\right\rangle _x$ written in the $S_z$ basis with general coefficients:

$\left|{+}\right\rangle _x = a \left|{+}\right\rangle + be^{i\phi} \left|{-}\right\rangle$

Notice that:

(1) $a$, $b$, and $\phi$ are all real numbers; (2) the relative phase is loaded onto the second coefficient only.

My job is to use measurement probabilities to determine $a$, $b$, and $\phi$.

I'll prepare a state $\left|{+}\right\rangle _x$ and then send it through $x$, $y$, and $z$ analyzers. When I do that, I see the following probabilities:

 Input = $\left|{+}\right\rangle _x$ $S_x$ $S_y$ $S_z$ $P(\hbar/2)$ 1 1/2 1/2 $P(-\hbar/2)$ 0 1/2 1/2

First, looking at the probability for the $S_z$ components:

$\mathcal(S_z = +\hbar/2) = | \left\langle {+}\middle|{+}\right\rangle _x |^2 = 1/2$

Plugging in the $\left|{+}\right\rangle _x$ written in the $S_z$ basis:

$1/2 = \Big| \left\langle {+}\right|\Big( a\left|{+}\right\rangle + be^{i\phi} \left|{-}\right\rangle \Big) \Big|^2$

Distributing the $\left\langle {+}\right|$ through the parentheses and use orthonormality: \begin{align*} 1/2 &= \Big| a\cancelto{1}{\left\langle {+}\middle|{+}\right\rangle } + be^{i\phi} \cancelto{0}{\left\langle {+}\middle|{-}\right\rangle } \Big|^2 \\ &= |a|^2\\[12pt] \rightarrow a &= \frac{1}{\sqrt{2}} \end{align*}

Similarly, looking at $S_z = -\hbar/2$: \begin{align*} \mathcal(S_z = +\hbar/2) &= | \left\langle {-}\middle|{+}\right\rangle _x |^2 = 1/2 \\ 1/2 = \Big| \left\langle {-}\right|\Big( a\left|{+}\right\rangle + be^{i\phi} \left|{-}\right\rangle \Big) \Big|^2\\ 1/2 &= \Big| a\cancelto{0}{\left\langle {-}\middle|{+}\right\rangle } + be^{i\phi} \cancelto{1}{\left\langle {-}\middle|{-}\right\rangle } \Big|^2 \\ &= |be^{i\phi}|^2\\ &= |b|^2 \cancelto{1}{(e^{i\phi})(e^{-i\phi})}\\[12pt] \rightarrow b &= \frac{1}{\sqrt{2}} \end{align*}

I can't yet solve for $\phi$ but I can do similar calculations for $\left|{-}\right\rangle _x$:

 Input = $\left|{-}\right\rangle _x$ $S_x$ $S_y$ $S_z$ $P(\hbar/2)$ 0 1/2 1/2 $P(-\hbar/2)$ 1 1/2 1/2
\begin{align*} \left|{-}\right\rangle _x &= c \left|{+}\right\rangle + de^{i\gamma} \left|{-}\right\rangle \\ \mathcal(S_z = +\hbar/2) &= | \left\langle {+}\middle|{-}\right\rangle _x |^2 = 1/2\\ \rightarrow c = \frac{1}{\sqrt{2}}\\ \mathcal(S_z = +\hbar/2) &= | \left\langle {-}\middle|{-}\right\rangle _x |^2 = 1/2\\ \rightarrow d = \frac{1}{\sqrt{2}}\\ \end{align*}

So now I have: \begin{align*} \left|{+}\right\rangle _x &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}e^{i\beta} \left|{-}\right\rangle \\ \left|{-}\right\rangle _x &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}e^{i\gamma} \left|{-}\right\rangle \\ \end{align*}

I know $\beta \neq \gamma$ because these are not the same state - they are orthogonal to each other: \begin{align*} 0 &= \,_x\left\langle {+}\middle|{-}\right\rangle _x \\ &= \Big(\frac{1}{\sqrt{2}} \left\langle {+}\right| + \frac{1}{\sqrt{2}}e^{i\beta} \left\langle {-}\right| \Big)\Big( \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}e^{i\gamma} \left|{-}\right\rangle \Big)\\ \end{align*}

Now FOIL like mad and use orthonormality: \begin{align*} 0 &= \frac{1}{2}\Big(\cancelto{1}{\left\langle {+}\middle|{+}\right\rangle } + e^{i\gamma} \cancelto{0}{\left\langle {+}\middle|{-}\right\rangle } + e^{i\beta} \cancelto{0}{\left\langle {-}\middle|{+}\right\rangle } + e^{i(\gamma - \beta)}\cancelto{1}{\left\langle {-}\middle|{-}\right\rangle } \Big)\\ &= \frac{1}{2}\Big(1 + e^{i(\gamma - \beta} \Big) \\ \rightarrow & \quad e^{i(\gamma-\beta)} = -1 \end{align*}

This means that $\gamma-\beta = \pi$. I don't have enough information to solve for $\beta$ and $\gamma$, but there is a one-time conventional choice made that $\beta = 0$ and $\gamma = 1$, so that: \begin{align*} \left|{+}\right\rangle _x &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}\cancelto{1}{e^{i0}} \left|{-}\right\rangle \\ \left|{-}\right\rangle _x &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}\cancelto{-1}{e^{i\pi}} \left|{-}\right\rangle \\[12pt] \rightarrow \left|{+}\right\rangle _x &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle \color{red}{+} \frac{1}{\sqrt{2}}\left|{-}\right\rangle \\ \left|{-}\right\rangle _x &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle \color{red}{-} \frac{1}{\sqrt{2}}\left|{-}\right\rangle \\[12pt] \end{align*}

When $\left|{\pm}\right\rangle _y$ is the input state:

 Input = $\left|{+}\right\rangle _y$ $S_x$ $S_y$ $S_z$ $P(\hbar/2)$ 1/2 1 1/2 $P(-\hbar/2)$ 1/2 0 1/2
 Input = $\left|{-}\right\rangle _y$ $S_x$ $S_y$ $S_z$ $P(\hbar/2)$ 1/2 0 1/2 $P(-\hbar/2)$ 1/2 1 1/2

The calculations proceed in the same way. The $S_z$ probabilities give me: \begin{align*} \left|{+}\right\rangle _y &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}\cancelto{1}{e^{i\alpha}} \left|{-}\right\rangle \\ \left|{-}\right\rangle _y &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}\cancelto{-1}{e^{i\theta}} \left|{-}\right\rangle \\ \end{align*}

The orthongality between $\left|{+}\right\rangle _y$ and $\left|{-}\right\rangle _y$ mean that $\theta - \alpha = \pi$.

But I also know the $S_x$ probabilities and how to write $|ket{\pm}_x$ in the $S_z$ basis. For an input of $\left|{+}\right\rangle _y$: \begin{align*} \mathcal(S_x = +\hbar/2) &= | \,_x\left\langle {+}\middle|{+}\right\rangle _y |^2 = 1/2 \\ 1/2 &= \Big| \Big(\frac{1}{\sqrt{2}} \left\langle {+}\right| + \frac{1}{\sqrt{2}}\left\langle {-}\right|\Big) \Big( \frac{1}{\sqrt{2}}\left|{+}\right\rangle + \frac{1}{\sqrt{2}}e^{i\alpha} \left|{-}\right\rangle \Big) \Big|^2\\ 1/2 &= \Big| \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \cancelto{1}{\left\langle {+}\middle|{+}\right\rangle } + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}e^{i\alpha} \cancelto{1}{\left\langle {-}\middle|{-}\right\rangle } \Big|^2 \\ &= \frac{1}{4}|1+e^{i\alpha}|^2\\ &= \frac{1}{4} \Big( 1+e^{i\alpha}\Big) \Big( 1+e^{-i\alpha}\Big)\\ &= \frac{1}{4} \Big( 2+e^{i\alpha} + e^{-i\alpha}\Big)\\ &= \frac{1}{4} \Big( 2+2\cos\alpha\Big)\\ \frac{1}{2} &= \frac{1}{2} + \frac{1}{2}\cos\alpha \\ 0 &= \cos\alpha\\ \rightarrow \alpha = \pm \frac{\pi}{2} \end{align*}

Here, again, I can't solve exactly for alpha (or $\theta$), but the convention is to choose $alpha = \frac{\pi}{2}$ and $\theta = \frac{3\pi}{2}$, making \begin{align*} \left|{+}\right\rangle _y &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}\cancelto{i}{e^{i\pi/2}} \left|{-}\right\rangle \\ \left|{-}\right\rangle _y &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle + \frac{1}{\sqrt{2}}\cancelto{-i}{e^{i3\pi/2}} \left|{-}\right\rangle \\ \rightarrow \left|{+}\right\rangle _y &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle \color{red}{+} \frac{\color{red}{i}}{\sqrt{2}} \left|{-}\right\rangle \\ \left|{-}\right\rangle _y &= \frac{1}{\sqrt{2}} \left|{+}\right\rangle \color{red}{-} \frac{\color{red}{i}}{\sqrt{2}} \left|{-}\right\rangle \\ \end{align*}

If I use these two convenctions for the relative phases, then I can write down $\left|{\pm}\right\rangle _n$ in an arbitrary direction described by the spherical coordinates $\theta$ and $\phi$ as:

Discuss the generalize eigenstates: \begin{align*}\ \left|{+}\right\rangle _n &= \cos \frac{\theta}{2} \left|{+}\right\rangle + \sin \frac{\theta}{2} e^{i\phi} \left|{-}\right\rangle \\ \left|{-}\right\rangle _n &= \sin \frac{\theta}{2} \left|{+}\right\rangle - \cos \frac{\theta}{2} e^{i\phi} \left|{-}\right\rangle \end{align*}

And how the $\left|{\pm}\right\rangle _x$ and $\left|{\pm}\right\rangle _y$ are consistent.

• Found in: Quantum Fundamentals course(s)

Small Group Activity

60 min.

##### Going from Spin States to Wavefunctions
Students review using the Arms representation to represent states for discrete quantum systems and connecting the Arms representation to histogram and matrix representation. The student then extend the Arms representation to begin exploring the continuous position basis.
• Found in: Quantum Fundamentals course(s) Found in: Completeness Relations, Arms Sequence for Complex Numbers and Quantum States sequence(s)

Small Group Activity

30 min.

##### The Hill
In this small group activity, students determine various aspects of local points on an elliptic hill which is a function of two variables. The gradient is emphasized as a local quantity which points in the direction of greatest change at a point in the scalar field.
• Found in: Vector Calculus II, Vector Calculus I, Surfaces/Bridge Workshop course(s) Found in: Gradient Sequence sequence(s)

Small Group Activity

30 min.

##### DELETE Navigating a Hill
In this small group activity, students determine various aspects of local points on an elliptic hill which is a function of two variables. The gradient is emphasized as a local quantity which points in the direction of greatest change at a point in the scalar field.
• Found in: Static Fields, AIMS Maxwell course(s)

Small Group Activity

30 min.

##### Using $pV$ and $TS$ Plots
Students work out heat and work for rectangular paths on $pV$ and $TS$ plots. This gives with computing heat and work, applying the First Law, and recognizing that internal energy is a state function, which cannot change after a cyclic process.
• Found in: Energy and Entropy course(s)

Quiz

60 min.

##### Free expansion
Students will determine the change in entropy (positive, negative, or none) for both the system and surroundings in three different cases. This is followed by an active whole-class discussion about where the entropy comes from during an irreversible process.
• Found in: Energy and Entropy course(s)

Small Group Activity

30 min.

##### Time Evolution of a Spin-1/2 System
In this small group activity, students solve for the time dependence of two quantum spin 1/2 particles under the influence of a Hamiltonian. Students determine, given a Hamiltonian, which states are stationary and under what circumstances measurement probabilities do change with time.
• Found in: Quantum Fundamentals course(s)

Problem

10 min.

##### Coefficients in Wavefunction notation
Students use the completeness relation for the position basis to re-express expressions in bra/ket notation in wavefunction notation.

Problem

5 min.

##### Dimensional Analysis of Kets
Students consider the dimensions of spin-state kets and position-basis kets.
• Found in: Completeness Relations sequence(s)

Small Group Activity

10 min.

##### Changing Spin Bases with a Completeness Relation
Students work in small groups to use completeness relations to change the basis of quantum states.
• Found in: Quantum Fundamentals course(s) Found in: Completeness Relations sequence(s)

Small Group Activity

30 min.

##### Outer Product of a Vector on Itself
Students compute the outer product of a vector on itself to product a projection operator. Students discover that projection operators are idempotent (square to themselves) and that a complete set of outer products of an orthonormal basis is the identity (a completeness relation).
• Found in: Quantum Fundamentals course(s) Found in: Completeness Relations sequence(s)

Computational Activity

120 min.

##### Position operator
Students find matrix elements of the position operator $\hat x$ in a sinusoidal basis. This allows them to express this operator as a matrix, which they can then numerically diagonalize and visualize the eigenfunctions.
• Found in: Computational Physics Lab II course(s) Found in: Computational wave function inner products sequence(s)

Small Group Activity

30 min.

##### Finding Matrix Elements
In this small group activity, students multiply a general 3x3 matrix with standard basis row/column vectors to pick out individual matrix elements. Students generate the expressions for the matrix elements in bra/ket notation.
• Found in: Quantum Fundamentals course(s)

Small Group Activity

60 min.

##### Ice Calorimetry Lab
This lab gives students a chance to take data on the first day of class (or later, but I prefer to do it the first day of class). It provides an immediate context for thermodynamics, and also gives them a chance to experimentally measure a change in entropy. Students are required to measure the energy required to melt ice and raise the temperature of water, and measure the change in entropy by integrating the heat capacity.
• Found in: Ice Calorimetry Sequence sequence(s)

Small Group Activity

5 min.

##### The Resistors
This small group activity is designed to provide practice with the multivariable chain rule. Students determine a particular rate of change using given information involving other rates of change. The discussion emphasizes the equivalence of a variety of approaches, including the use of differentials. Good “review” problem; can also be used as a homework problem.
• Found in: Vector Calculus I, Surfaces/Bridge Workshop course(s)

Small Group Activity

30 min.

##### Changes in Internal Energy
Students consider the change in internal energy during three different processes involving a container of water vapor on a stove. Using the 1st Law of Thermodynamics, students reason about how the internal energy would change and then compare this prediction with data from NIST presented as a contour plot.
• Found in: None course(s) Found in: Warm-Up sequence(s)

Small Group Activity

10 min.

##### Using Tinker Toys to Represent Spin 1/2 Quantum Systems
Students use Tinker Toys to represent each component in a two-state quantum spin system in all three standard bases ($x$, $y$, and $z$). Through a short series of instructor-led prompts, students explore the difference between overall phase (which does NOT change the state of the system) and relative phase (which does change the state of the system). This activity is optional in the Arms Sequence Arms Sequence for Complex Numbers and Quantum States.
• Found in: Arms Sequence for Complex Numbers and Quantum States sequence(s)

Computer Simulation

30 min.

##### Visualization of Power Series Approximations
Students use prepared Sage code or a prepared Mathematica notebook to plot $\sin\theta$ simultaneously with several terms of a power series expansion to judge how well the approximation fits. Students can alter the worksheet to change the number of terms in the expansion and even to change the function that is being considered. Students should have already calculated the coefficients for the power series expansion in a previous activity, Calculating Coefficients for a Power Series.
• Found in: Theoretical Mechanics, Static Fields, Central Forces, AIMS Maxwell, Problem-Solving, None course(s) Found in: Power Series Sequence (Mechanics), Power Series Sequence (E&M) sequence(s)