Activities
For each of the following vector fields, find a potential function if one exists, or argue that none exists.
- \(\boldsymbol{\vec{F}} = (3x^2 + \tan y)\,\boldsymbol{\hat{x}} + (3y^2 + x\sec^2 y) \,\boldsymbol{\hat{y}}\)
- \(\boldsymbol{\vec{G}} = y\,\boldsymbol{\hat{x}} - x\,\boldsymbol{\hat{y}}\)
- \(\boldsymbol{\vec{H}} = (2xy + y^2 \sin z) \,\boldsymbol{\hat{x}} + (x^2 + z + 2xy\sin z) \,\boldsymbol{\hat{y}} + (y + z + xy^2 \cos z) \,\boldsymbol{\hat{z}}\)
- \(\boldsymbol{\vec{K}} = yz \,\boldsymbol{\hat{x}} + xz \,\boldsymbol{\hat{y}}\)
Main ideas
- Finding potential functions.
Students love this activity. Some groups will finish in 10 minutes or less; few will require as much as 30 minutes. ^{*}
Prerequisites
- Fundamental Theorem for line integrals
- The Murder Mystery Method
Warmup
none
Props
- whiteboards and pens
Wrapup
- Revisit integrating conservative vector fields along various paths, including reversing the orientation and integrating around closed paths.
Details
In the Classroom
- We recommend having the students work in groups of 2 on this activity, and not having them turn anything in.
- Most students will treat the last example as 2-dimensional, giving the answer \(xyz\). Ask these students to check their work by taking the gradient; most will include a \(\boldsymbol{\hat{z}}\) term. Let them think this through. The correct answer of course depends on whether one assumes that \(z\) is constant; we have deliberately left this ambiguous.
- It is good and proper that students want to add together multivariable terms. Keep returning to the gradient, something they know well. It is better to discover the guidelines themselves.
Subsidiary ideas
- 3-d vector fields do not necessarily have a \(\boldsymbol{\hat{z}}\)-component!
Homework
A challenging question to ponder is why a surface fails to exist for nonconservative fields. Using an example such as \(y\,\boldsymbol{\hat{x}}+\boldsymbol{\hat{y}}\), prompt students to plot the field and examine its magnitude at various locations. Suggest piecing together level sets. There is serious geometry lurking that entails smoothness. Wrestling with this is healthy.
Essay questions
Write 3-5 sentences describing the connection between derivatives and integrals in the single-variable case. In other words, what is the one-dimensional version of MMM? Emphasize that much of vector calculus is generalizing concepts from single-variable theory.
Enrichment
The derivative check for conservative vector fields can be described using the same type of diagrams as used in the Murder Mystery Method; this is just moving down the diagram (via differentiation) from the row containing the components of the vector field, rather than moving up (via integration). We believe this should not be mentioned until after this lab.
When done in 3-d, this makes a nice introduction to curl --- which however is not needed until one is ready to do Stokes' Theorem. We would therefore recommend delaying this entire discussion, including the 2-d case, until then.
- Work out the Murder Mystery Method using polar basis vectors, by reversing the process of taking the gradient in this basis.
- Revisit the example in the Ampère's Law lab, using the Fundamental Theorem to explain the results. This can be done without reference to a basis, but it is worth computing \(\boldsymbol{\vec\nabla}\phi\) in a polar basis.
Students work in small groups to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.
In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.
Students compute a vector line integral, then investigate whether this integral is path independent.
Student discuss how many paths can be found on a map of the vector fields \(\vec{F}\) for which the integral \(\int \vec{F}\cdot d\vec{r}\) is positive, negative, or zero. \(\vec{F}\) is conservative. They do a similar activity for the vector field \(\vec{G}\) which is not conservative.
Sketch each of the vector fields below.
- \(\boldsymbol{\vec F} =-y\,\boldsymbol{\hat x} + x\,\boldsymbol{\hat y}\)
- \(\boldsymbol{\vec G} = x\,\boldsymbol{\hat x} + y\,\boldsymbol{\hat y}\)
- \(\boldsymbol{\vec H} = y\,\boldsymbol{\hat x} + x\,\boldsymbol{\hat y}\)
Students examine a plastic “surface” graph of the gravitational potential energy of an Earth-satellite system to explore the properties of gravitational potential energy for a spherically symmetric system.
Students hold rulers and meter sticks to represent a vector field. The instructor holds a hula hoop to represent a small area element. Students are asked to describe the flux of the vector field through the area element.
Students work in small groups to use the Biot-Savart law \[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.
In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.
Students are shown a topographic map of an oval hill and imagine that the classroom is on the hill. They are asked to point in the direction of the gradient vector appropriate to the point on the hill where they are "standing".
In this small group activity, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in different coordinate systems (cartesian, cylindrical, spherical).
Use Vector Differential--Rectangular as an introduction. This activity can be done simultaneously with Pineapples and Pumpkins where students or the instructor cut volume elements out of pineapples and/or pumpkins to show the geometry.
In this introductory lecture/SWBQ, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in rectangular coordinates for coordinate equals constant paths.
This activity can be done as a mini-lecture/SWBQ as an introduction to Vector Differential--Curvilinear where students find the vector differential in cylindrical and spherical coordinates..
Consider a column of atoms each of mass \(M\) at temperature \(T\) in a uniform gravitational field \(g\). Find the thermal average potential energy per atom. The thermal average kinetic energy is independent of height. Find the total heat capacity per atom. The total heat capacity is the sum of contributions from the kinetic energy and from the potential energy. Take the zero of the gravitational energy at the bottom \(h=0\) of the column. Integrate from \(h=0\) to \(h=\infty\). You may assume the gas is ideal.
In this course, two of the primary examples we will be using are the potential due to gravity and the potential due to an electric charge. Both of these forces vary like \(\frac{1}{r}\), so they will have many, many similarities. Most of the calculations we do for the one case will be true for the other. But there are some extremely important differences:
- Find the value of the electrostatic potential energy of a system consisting of a hydrogen nucleus and an electron separated by the Bohr radius. Find the value of the gravitational potential energy of the same two particles at the same radius. Use the same system of units in both cases. Compare and the contrast the two answers.
- Find the value of the electrostatic potential due to the nucleus of a hydrogen atom at the Bohr radius. Find the gravitational potential due to the nucleus at the same radius. Use the same system of units in both cases. Compare and contrast the two answers.
- Briefly discuss at least one other fundamental difference between electromagnetic and gravitational systems. Hint: Why are we bound to the earth gravitationally, but not electromagnetically?
These notes from the fifth week of https://paradigms.oregonstate.edu/courses/ph441 cover the grand canonical ensemble. They include several small group activities.
Students write python programs to compute the potential due to a square of surface charge, and then to visualize the result. This activity can be used to introduce students to the process of integrating numerically.
Students write python programs to compute and visualize the potential due to four point charges. For students with minimal programming ability and no python experience, this activity can be a good introduction to writing code in python usingnumpy
andmatplotlib
.
Students work in small groups to use the superposition principle \[V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}\] to find an integral expression for the electrostatic potential, \(V(\vec{r})\), everywhere in space, due to a ring of charge.
In an optional extension, students find a series expansion for \(V(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.
Students work in small groups to use the superposition principle \[V(\vec{r}) = \frac{1}{4\pi\epsilon_0}\sum_i \frac{q_i}{\vert\vec{r}-\vec{r}_i\vert}\] to find the electrostatic potential \(V\) everywhere in space due to a pair of charges (either identical charges or a dipole). This activity can be paired with activity 29 to find the limiting cases of the potential on the axes of symmetry.
Students solve numerically for the potential due to a spherical shell of charge. Although this potential is straightforward to compute using Gauss's Law, it serves as a nice example for numerically integrating in spherical coordinates because the correct answer is easy to recognize.
Students work in small groups to use the superposition principle \[V(\vec{r}) = \frac{1}{4\pi\epsilon_0}\sum_i \frac{q_i}{\vert\vec{r}-\vec{r}_i\vert}\] to find the electrostatic potential \(V\) everywhere in space due to a pair of charges (either identical charges or a dipole). Different groups are assigned different arrangements of charges and different regions of space to consider: either on the axis of the charges or in the plane equidistant from the two charges, for either small or large values of the relevant geometric variable. Each group is asked to find a power series expansion for the electrostatic potential, valid in their group's assigned region of space. The whole class wrap-up discussion then compares and contrasts the results and discuss the symmetries of the two cases.
Gauss's Law: \[ \oint \vec{E}\cdot \hat{n}\, dA = {1\over\epsilon_0}\, Q_{\hbox{enc}} \]
Ampère's Law:
\[ \oint \vec{B}\cdot d\vec{r} = \mu_0 \, I_{\hbox{enc}} \]
Potentials: \begin{eqnarray*} \vec{E}&=&-\vec{\nabla} V\\ \vec{B}&=&\vec{\nabla}\times\vec{A} \end{eqnarray*}
Maxwell's Equations: \begin{eqnarray*} \vec{\nabla}\cdot\vec{E} &=& \frac{\rho}{\epsilon_0}\\ \vec{\nabla}\cdot\vec{B} &=& 0\\ \vec{\nabla}\times\vec{E} &=& 0\\ \vec{\nabla}\times\vec{B} &=& {\mu_0}\, \vec{J} \end{eqnarray*}
Superposition Laws: \begin{eqnarray*} V(\vec{r}) &=& \frac{1}{4\pi\epsilon_0} \int{\rho(\vec{r}')\, d\tau'\over \vert \vec{r}-\vec{r}'\vert}\\ \vec{E}(\vec{r}) &=& \frac{1}{4\pi\epsilon_0} \int{\rho(\vec{r}')(\vec{r}-\vec{r}')\, d\tau'\over \vert \vec{r}-\vec{r}'\vert^3}\\ \vec{A}(\vec{r}) &=& \frac{\mu_0}{4\pi} \int{\vec{J}(\vec{r}')\, d\tau'\over \vert \vec{r}-\vec{r}'\vert}\\ \vec{B}(\vec{r}) &=& \frac{\mu_0}{4\pi} \int{\vec{J}(\vec{r}')\times (\vec{r}-\vec{r}')\, d\tau'\over \vert \vec{r}-\vec{r}'\vert^3}\\ V(B)-V(A)&=&-\int_A^B \vec{E}\cdot d\vec{r} \end{eqnarray*}
Position Vectors \begin{align*} \vec{r} &= x \hat{x} + y\hat{y} + z\hat{z}\\ &= s \hat{s} + z\hat{z}\\ &= r\hat{r} \end{align*}The distance between two position vectors
- In cylindrical coordinates: \[\left\vert\vec r -\vec r^{\prime}\right\vert =\sqrt{s^2+s^{\prime\, 2}-2s\, s^{\prime}\cos(\phi- \phi^{\prime}) +(z-z^{\prime})^2}\]
- In spherical coordinates: \[\left\vert\vec r -\vec r^{\prime}\right\vert =\sqrt{r^2+r^{\prime\, 2}-2r\, r^{\prime}\left[ \sin\theta\sin\theta^{\prime}\cos(\phi-\phi^{\prime}) +\cos\theta\cos\theta^{\prime}\right]}\]
Rectangular Coordinates: \begin{eqnarray*} \vec{\nabla} f &=& \frac{\partial f}{\partial x}\,\hat{x} + \frac{\partial f}{\partial y}\,\hat{y} + \frac{\partial f}{\partial z}\,\hat{z} \\ \vec{\nabla}\cdot\vec{F} &=& \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} \\ \vec{\nabla}\times\vec{F} &=& \left(\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z}\right)\hat{x} + \left(\frac{\partial F_x}{\partial z} -\frac{\partial F_z}{\partial x}\right)\hat{y} + \left(\frac{\partial F_y}{\partial x} -\frac{\partial F_x}{\partial y}\right)\hat{z} \end{eqnarray*}
Cylindrical Coordinates: \begin{eqnarray*} \vec{\nabla} f &=& \frac{\partial f}{\partial s}\,\hat{s} + \frac{1}{s}\frac{\partial f}{\partial \phi}\,\hat{\phi} + \frac{\partial f}{\partial z}\,\hat{z} \\ \vec{\nabla}\cdot\vec{F} &=& \frac{1}{s}\frac{\partial}{\partial s}\left({s}F_{s}\right) + \frac{1}{s}\frac{\partial F_\phi}{\partial \phi} + \frac{\partial F_z}{\partial z} \\ \vec{\nabla}\times\vec{F} &=& \left( \frac{1}{s}\frac{\partial F_z}{\partial \phi} - \frac{\partial F_\phi}{\partial z} \right) \hat{s} + \left(\frac{\partial F_s}{\partial z}-\frac{\partial F_z}{\partial s}\right) \hat{\phi} + \frac{1}{s} \left( \frac{\partial}{\partial s}\left({s}F_{\phi}\right) - \frac{\partial F_s}{\partial \phi} \right) \hat{z} \end{eqnarray*}
Spherical Coordinates: \begin{eqnarray*} \vec{\nabla} f &=& \frac{\partial f}{\partial r}\,\hat{r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\,\hat{\theta} + \frac{1}{r\sin\theta}\frac{\partial f}{\partial \phi}\,\hat{\phi} \\ \vec{\nabla}\cdot\vec{F} &=& \frac{1}{r^2}\frac{\partial}{\partial r}\left({r^2}F_{r}\right) + \frac{1}{r\sin\theta}\frac{\partial}{\partial \theta}\left({\sin\theta}F_{\theta}\right) + \frac{1}{r\sin\theta}\frac{\partial F_\phi}{\partial \phi} \\ \vec{\nabla}\times\vec{F} &=& \frac{1}{r\sin\theta} \left( \frac{\partial}{\partial \theta} \left({\sin\theta}F_{\phi}\right) - \frac{\partial F_\theta}{\partial \phi} \right) \hat{r} + \frac{1}{r} \left( \frac{1}{\sin\theta} \frac{\partial F_r}{\partial \phi} - \frac{\partial}{\partial r}\left({r}F_{\phi}\right) \right) \hat{\theta} \\ && \quad + \frac{1}{r} \left( \frac{\partial}{\partial r}\left({r}F_{\theta}\right) - \frac{\partial F_r}{\partial \theta} \right) \hat{\phi} \end{eqnarray*}
Lorentz Force Law:\[\vec{F}=q_{\hbox{test}}\left(\vec{E}+\vec{v}\times\vec{B}\right)\]
Step and Delta Functions: \begin{eqnarray*} \frac{d}{dx} \theta(x-a)&=&\delta(x-a)\\ \int_{-\infty}^{\infty} f(x)\delta(x-a)\, dx&=&f(a) \end{eqnarray*}
Vector Calculus Theorems: \begin{eqnarray*} \oint \vec{F} \cdot d\vec{A} &=& \int \vec{\nabla} \cdot \vec{F} d\tau\\ \oint \vec{F} \cdot d\vec{\ell} &=& \int (\vec{\nabla} \times \vec{F}) \cdot d\vec{A}\\ \end{eqnarray*}
Total Charge and Current: \begin{eqnarray*} Q &=& \int \rho (\vec{r}') d\tau'\\ I &=& \int \vec{J} (\vec{r}') \cdot d\vec{A'}\\ \end{eqnarray*}
Students are prompted to consider the scalar superposition of the electric potential due to multiple point charges. First a single point charge is discussed, then four positive charges, then an electric quadrupole. Students draw the equipotential curves in the plane of the charges, while also considering the 3D nature of equipotentials.
One way to write volume charge densities without using piecewise functions is to use step \((\Theta)\) or \(\delta\) functions. Consider a spherical shell with charge density \[\rho (\vec{r})=\alpha3e^{(k r)^3} \]
between the inner radius \(a\) and the outer radius \(b\). The charge density is zero everywhere else.
- (2 pts) What are the dimensions of the constants \(\alpha\) and \(k\)?
- (2 pts) By hand, sketch a graph the charge density as a function of \(r\) for \(\alpha > 0\) and \(k>0\) .
- (2 pts) Use step functions to write this charge density as a single function valid everywhere in space.
Students draw the 3D graphs of equations using three variables. They make choices for drawing a stack of curves in parallel planes and a curve in a perpendicular plane (e.g. substituting in values for \(x\), \(y\), or \(z\). )
Using either this Geogebra applet or this Mathematica notebook, explore the wave functions on a ring. (Note: The Geogebra applet may be a little easier to use and understand and is accessible if you don't have access to Mathematica, but it is more limited in the wave functions that you can represent. Also, the animation is pretty jumpy in some browsers, especially Firefox. Imagine that the motion is smooth.)
- Look at graphs of the following states \begin{align} \Phi_1(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle +\left|{-2}\right\rangle )\\ \Phi_2(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle -\left|{-2}\right\rangle )\\ \Phi_3(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle +i\left|{-2}\right\rangle ) \end{align} Write a short description of how these states differ from each other.
- Find a state for which the probability density does not depend on time. Write the state in both ket and wave function notation. These are called stationary states. Generalize your result to give a characterization of the set of all possible states that are stationary states.
- Find a state that is right-moving. Write the state in both ket and wave function notation. Generalize your result to give a characterization of the set of all possible states that are right-moving.
- Find a state that is a standing wave. Write the state in both ket and wave function notation. Generalize your result to give a characterization of the set of all possible states that are standing waves.
Overview paragraph here.
Students consider how changing the volume of a system changes the internal energy of the system. Students use plastic graph models to explore these functions.
Students are asked to:
- Test to see if one of the given functions is an eigenfunction of the given operator
- See if they can write the functions that are found not to be eigenfunctions as a linear combination of eigenfunctions.
(4pts) Sketch each of the vector fields below.
- \(\boldsymbol{\vec K}=s\,\boldsymbol{\hat s}\)
- \(\boldsymbol{\vec L}=\frac1s\boldsymbol{\hat\phi}\)
- \(\boldsymbol{\vec M}=\sin\phi\,\boldsymbol{\hat s}\)
- \(\boldsymbol{\vec N}=\sin(2\pi s)\,\boldsymbol{\hat\phi}\)
Students construct two different rectangular coordinate systems and corresponding vector bases, then compare computations done with each.
Students compute the outer product of a vector on itself to product a projection operator. Students discover that projection operators are idempotent (square to themselves) and that a complete set of outer products of an orthonormal basis is the identity (a completeness relation).
Students explore path integrals using a vector field map and thinking about integration as chop-multiply-add.
Students use known algebraic expressions for vector line elements \(d\boldsymbol{\vec{r}}\) to determine all simple vector area \(d\boldsymbol{\vec{A}}\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.
This activity is identical to Scalar Surface and Volume Elements except uses a vector approach to find directed surface and volume elements.
A short improvisational role-playing skit based on the Star Trek series in which students explore the definition and notation for position vectors, the importance of choosing an origin, and the geometric nature of the distance formula. \[\vert\vec{r}-\vec{r}^\prime\vert=\sqrt{(x-x^\prime)^2+(y-y^\prime)^2-(z-z^\prime)^2}\]
Let \begin{align} \boldsymbol{\vec a} &= \boldsymbol{\hat x}-3\boldsymbol{\hat y}-\boldsymbol{\hat z}\\ \boldsymbol{\vec b} &= \boldsymbol{\hat x}+\boldsymbol{\hat y}+2\boldsymbol{\hat z}\\ {\boldsymbol{\vec c}} &= -2\boldsymbol{\hat x}-\boldsymbol{\hat y}+\boldsymbol{\hat z}\\ \boldsymbol{\vec d} &= -\boldsymbol{\hat x}-\boldsymbol{\hat y}+\boldsymbol{\hat z} \end{align}
Use the dot product to determine which pairs (if any) of these vectors
- Are perpendicular?
- Are parallel?
- Have an angle less than \(\pi/2\) between them?
- Have an angle of more than \(\pi/2\) between them?
These notes from week 6 of https://paradigms.oregonstate.edu/courses/ph441 cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.
Problem
A circular cylinder of radius \(R\) rotates about the long axis with angular velocity \(\omega\). The cylinder contains an ideal gas of atoms of mass \(M\) at temperature \(T\). Find an expression for the dependence of the concentration \(n(r)\) on the radial distance \(r\) from the axis, in terms of \(n(0)\) on the axis. Take \(\mu\) as for an ideal gas.
Problem
The concentration of potassium \(\text{K}^+\) ions in the internal sap of a plant cell (for example, a fresh water alga) may exceed by a factor of \(10^4\) the concentration of \(\text{K}^+\) ions in the pond water in which the cell is growing. The chemical potential of the \(\text{K}^+\) ions is higher in the sap because their concentration \(n\) is higher there. Estimate the difference in chemical potential at \(300\text{K}\) and show that it is equivalent to a voltage of \(0.24\text{V}\) across the cell wall. Take \(\mu\) as for an ideal gas. Because the values of the chemical potential are different, the ions in the cell and in the pond are not in diffusive equilibrium. The plant cell membrane is highly impermeable to the passive leakage of ions through it. Important questions in cell physics include these: How is the high concentration of ions built up within the cell? How is metabolic energy applied to energize the active ion transport?
- David adds
- You might wonder why it is even remotely plausible to consider the ions in solution as an ideal gas. The key idea here is that the ideal gas entropy incorporates the entropy due to position dependence, and thus due to concentration. Since concentration is what differs between the cell and the pond, the ideal gas entropy describes this pretty effectively. In contrast to the concentration dependence, the temperature-dependence of the ideal gas chemical potential will not be so great.
Write the equation for the electrostatic potential due to a point charge.
Instructor's Guide
Prerequisite Knowledge
Students will usually have seen the electrostatic potential due to a point charge in their introductory course, but may have trouble recalling it.Whole-Class Conversations
As students try to remember the formula, many will conflate potential, potential energy, force, and electric field. Their answers may have some aspects of each of these. We use this question to get the iconic equation into the students' working memory in preparation for subsequent activities. This question also be used to help student disambiguate these different physical quantities.
Correct answers you're likely to see
\[V=\frac{kq}{r}\]
\[V=\frac{1}{4\pi\epsilon_0}\frac{q}{r}\] You may want to discuss which constants to use in which contexts, e.g. \(k\) is short and easy to write, but may be conflated with other uses of \(k\) in a give problem whereas \(\frac{1}{4\pi\epsilon_0}\) assumes you are working in a particular system of units.
Incorrect answers you're likely to see
- Two charges instead of one \[\cancel{V=\frac{kq_{1}q_{2}}{r}}\]
- Distance squared in the denominator \[\cancel{V=\frac{kq}{r^2}}\]
- Vector values \[\cancel{V=\frac{kq\, \hat r}{r}}\]
Possible follow-up questions to help with the disambiguation:
- Relationship between potential and potential energy \(U = qV\)
- Which function is the derivative of the other: \(1/r\) or \(1/r^2\)?
- Which physical quantity (potential or electric field, potential energy or force) is the derivative of the other?
- What is the electrostatic potential conceptually?
- Which function falls off faster: \(1/r\) or \(1/r^2\)?
- What are the dimensions of potential? Units?
- Where is the zero of potential?
Wrap-up
- This could be a good time to refer to the (correct) expression for the potential as an iconic equation, which will need to be further interpreted (”unpacked”) in particular physical situations. This is where the course is going next.
- This SWBQ can also serve to help students learn about recall as a cognitive activity. While parts of the equations that students write may be incorrect, many other parts will be correct. Let the way in which you manage the class discussion model for the students how a professional goes about quickly disambiguating several different choices. And TELL the students that this is what you are doing. Deliberately invoke their metacognition.
- Many students may not know that the electrostatic potential that we are talking about in this activity is the same quantity as what a voltmeter reads, in principle, but not in practice. You may need to talk about how a voltmeter actually works, rather than idealizing it. It helps to have a voltmeter with leads as a prop. Students often want to know about the “ground” lead. We often tie a long string to it (to symbolize making a really long wire) and send the TA out of the room with the string, “headed off to infinity” while discussing the importance of setting the zero of potential. The extra minute or two of humerous byplay gives the importance of the zero of potential a chance to sink in.
We use this small whiteboard question as a transition between The Distance Formula (Star Trek) activity, where students are learning about how to describe (algebraically) the geometric distance between two points, and the Electrostatic Potential Due to a Pair of Charges (with Series) activity, where students are using these results and the superposition principle to find the electrostatic potential due to two point charges.
This activity is the initial activity in the sequence Visualizing Scalar Fields addressing the representations of scalar fields in the context of electrostatics.
Problem
Find the chemical potential of an ideal monatomic gas in two dimensions, with \(N\) atoms confined to a square of area \(A=L^2\). The spin is zero.
Find an expression for the energy \(U\) of the gas.
Find an expression for the entropy \(\sigma\). The temperature is \(kT\).
See also the following more detailed problem and solution: Effective Potentials: Graphical Version
An electron is moving on a two dimension surface with a radially symmetric electrostatic potential given by the graph below:
- Sketch the effective potential if the angular momentum is not zero.
- Describe qualitatively, the shapes of all possible types of orbits, indicating the energy for each in your diagram.
(4pts) Find the electric field around an infinite, uniformly charged, straight wire, starting from the following expression for the electrostatic potential: \begin{equation*} V(\vec r)=\frac{2\lambda}{4\pi\epsilon_0}\, \ln\left( \frac{ s_0}{s} \right) \end{equation*}
The electrostatic potential due to a point charge at the origin is given by: \begin{equation*} V=\frac{1}{4\pi\epsilon_0} \frac{q}{r} \end{equation*}
- (2pts) Find the electric field due to a point charge at the origin as a gradient in rectangular coordinates.
- (2pts) Find the electric field due to a point charge at the origin as a gradient in spherical coordinates.
- (2pts) Find the electric field due to a point charge at the origin as a gradient in cylindrical coordinates.
Begin by prompting the students to brainstorm different ways to represent a three dimensional scalar field on a 2-D surface (like their paper or a whiteboard). The students use a pre-made Sage code or a Mathematica worksheet to visualize the electrostatic potential of several distributions of charges. The computer algebra systems demonstrate several different ways of plotting the potential.
Students examine a plastic "surface" graph of the electric potential due to two charged plates (near the center of the plates) and explore the properties of the electric potential.
Students use a plastic surface representing the potential due to a charged sphere to explore the electrostatic potential, equipotential lines, and the relationship between potential and electric field.
Students use a pre-written Mathematica notebook or a Geogebra applet to explore how the shape of the effective potential function changes as the various parameters (angular momentum, force constant, reduced mass) are varied.
Students observe the motion of a puck tethered to the center of the airtable. Then they plot the potential energy for the puck on their small whiteboards. A class discussion follows based on what students have written on their whiteboards.
Students examine a plastic "surface" graph of the gravitational potential energy of a Earth-satellite system to make connections between gravitational force and gravitational potential energy.
Students predict from graphs of simple 2-d vector fields whether the curl is positive, negative, or zero in various regions of the domain using the definition of the curl of a vector field at a point as the maximum circulation per unit area through an infinitesimal box surrounding that point. Optionally, students can use computer algebra to verify their predictions.