assignment Homework

Volume Charge Density, Version 2
charge density delta function Static Fields 2023 (6 years)

You have a charge distribution on the \(x\)-axis composed of two point charges: one with charge \(+3q\) located at \(x=-d\) and the other with charge \(-q\) located at \(x=+d\).

  1. Sketch the charge distribution.
  2. Write an expression for the volume charge density \(\rho (\vec{r})\) everywhere in space.

assignment Homework

Distribution function for double occupancy statistics
Orbitals Distribution function Thermal and Statistical Physics 2020

Let us imagine a new mechanics in which the allowed occupancies of an orbital are 0, 1, and 2. The values of the energy associated with these occupancies are assumed to be \(0\), \(\varepsilon\), and \(2\varepsilon\), respectively.

  1. Derive an expression for the ensemble average occupancy \(\langle N\rangle\), when the system composed of this orbital is in thermal and diffusive contact with a resevoir at temperature \(T\) and chemical potential \(\mu\).

  2. Return now to the usual quantum mechanics, and derive an expression for the ensemble average occupancy of an energy level which is doubly degenerate; that is, two orbitals have the identical energy \(\varepsilon\). If both orbitals are occupied the toal energy is \(2\varepsilon\). How does this differ from part (a)?

keyboard Computational Activity

120 min.

Electrostatic potential and Electric Field of a square of charge
Computational Physics Lab II 2023 (2 years)

integration electrostatic potential surface charge density

Students write python programs to compute the potential due to a square of surface charge, and then to visualize the result. This activity can be used to introduce students to the process of integrating numerically.

assignment Homework

Inner Product Properties
None 2023 The properties that an inner product on an abstract vector space must satisfy can be found in: Definition and Properties of an Inner Product. Definition: The inner product for any two vectors in the vector space of periodic functions with a given period (let's pick \(2\pi\) for simplicity) is given by: \[\left\langle {f}\middle|{g}\right\rangle =\int_0^{2\pi} f^*(x)\, g(x)\, dx\]
  1. Show that the first property of inner products \[\left\langle {f}\middle|{g}\right\rangle =\left\langle {g}\middle|{f}\right\rangle ^*\] is satisfied for this definition.
  2. Show that the second property of inner products \[\left\langle {f}\right|\Big(\lambda\left|{g}\right\rangle + \mu \left|{h}\right\rangle \Big) = \lambda\left\langle {f}\middle|{g}\right\rangle +\mu\left\langle {f}\middle|{h}\right\rangle \] is satisfied for this definition.

group Small Group Activity

30 min.

Electrostatic Potential Due to a Pair of Charges (without Series)
Static Fields 2023 (4 years) Students work in small groups to use the superposition principle \[V(\vec{r}) = \frac{1}{4\pi\epsilon_0}\sum_i \frac{q_i}{\vert\vec{r}-\vec{r}_i\vert}\] to find the electrostatic potential \(V\) everywhere in space due to a pair of charges (either identical charges or a dipole). This activity can be paired with activity 29 to find the limiting cases of the potential on the axes of symmetry.

face Lecture

120 min.

Ideal Gas
Thermal and Statistical Physics 2020

ideal gas particle in a box grand canonical ensemble chemical potential statistical mechanics

These notes from week 6 of Thermal and Statistical Physics cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.

face Lecture

30 min.

Review of Thermal Physics
Thermal and Statistical Physics 2020

thermodynamics statistical mechanics

These are notes, essentially the equation sheet, from the final review session for Thermal and Statistical Physics.

accessibility_new Kinesthetic

10 min.

Acting Out Charge Densities
Static Fields 2023 (7 years)

density charge density mass density linear density uniform idealization

Integration Sequence

Ring Cycle Sequence

Students, pretending they are point charges, move around the room acting out various prompts from the instructor regarding charge densities, including linear \(\lambda\), surface \(\sigma\), and volume \(\rho\) charge densities, both uniform and non-uniform. The instructor demonstrates what it means to measure these quantities. In a remote setting, we have students manipulate 10 coins to model the prompts in this activity and the we demonstrate the answers with coins under a doc cam.

keyboard Computational Activity

120 min.

Mean position
Computational Physics Lab II 2023 (2 years)

probability density particle in a box wave function quantum mechanics

Students compute probabilities and averages given a probability density in one dimension. This activity serves as a soft introduction to the particle in a box, introducing all the concepts that are needed.

assignment Homework

Symmetry Arguments for Gauss's Law
Static Fields 2023 (5 years)

Instructions for 2022: You will need to complete this assignment in a 15 minute appointment on Zoom or in person with one of the members of the teaching team between 1/21 and 10 pm on 1/26. Here is a link to a sign-up page.

You are required to watch a sample video for how to make symmetry arguments here. As demonstrated in the video you should bring with you to the meeting a cylinder, an observer, and a vector.

Use good symmetry arguments to find the possible direction for the electric field due to a charged wire. Also, use good symmetry arguments to find the possible functional dependence of the electric field due to a charged wire. Rather than writing this up to turn in, you should find a member of the teaching team and make the arguments to them verbally.

computer Mathematica Activity

30 min.

Visualization of Quantum Probabilities for the Hydrogen Atom
Central Forces 2023 (3 years) Students use Mathematica to visualize the probability density distribution for the hydrogen atom orbitals with the option to vary the values of \(n\), \(\ell\), and \(m\).

keyboard Computational Activity

120 min.

Electrostatic potential of spherical shell
Computational Physics Lab II 2022

electrostatic potential spherical coordinates

Students solve numerically for the potential due to a spherical shell of charge. Although this potential is straightforward to compute using Gauss's Law, it serves as a nice example for numerically integrating in spherical coordinates because the correct answer is easy to recognize.

assignment Homework

Pressure and entropy of a degenerate Fermi gas
Fermi gas Pressure Entropy Thermal and Statistical Physics 2020
  1. Show that a Fermi electron gas in the ground state exerts a pressure \begin{align} p = \frac{\left(3\pi^2\right)^{\frac23}}{5} \frac{\hbar^2}{m}\left(\frac{N}{V}\right)^{\frac53} \end{align} In a uniform decrease of the volume of a cube every orbital has its energy raised: The energy of each orbital is proportional to \(\frac1{L^2}\) or to \(\frac1{V^{\frac23}}\).

  2. Find an expression for the entropy of a Fermi electron gas in the region \(kT\ll \varepsilon_F\). Notice that \(S\rightarrow 0\) as \(T\rightarrow 0\).

group Small Group Activity

30 min.

Expectation Values for a Particle on a Ring
Central Forces 2023 (3 years)

central forces quantum mechanics eigenstates eigenvalues hermitian operators quantum measurements degeneracy expectation values time dependence

Quantum Ring Sequence

Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.

face Lecture

120 min.

Fermi and Bose gases
Thermal and Statistical Physics 2020

Fermi level fermion boson Bose gas Bose-Einstein condensate ideal gas statistical mechanics phase transition

These lecture notes from week 7 of Thermal and Statistical Physics apply the grand canonical ensemble to fermion and bosons ideal gasses. They include a few small group activities.

face Lecture

120 min.

Gibbs entropy approach
Thermal and Statistical Physics 2020

Gibbs entropy information theory probability statistical mechanics

These lecture notes for the first week of Thermal and Statistical Physics include a couple of small group activities in which students work with the Gibbs formulation of the entropy.

group Small Group Activity

60 min.

Ice Calorimetry Lab

heat entropy water ice

The students will set up a Styrofoam cup with heating element and a thermometer in it. They will measure the temperature as a function of time, and thus the energy transferred from the power supply, from which they compute changes in entropy.

group Small Group Activity

30 min.

Total Charge
Static Fields 2023 (6 years)

charge charge density multiple integral scalar field coordinate systems differential elements curvilinear coordinates

Integration Sequence

In this small group activity, students integrate over non-uniform charge densities in cylindrical and spherical coordinates to calculate total charge.

group Small Group Activity

120 min.

Equipotential Surfaces

E&M Quadrupole Scalar Fields

Students are prompted to consider the scalar superposition of the electric potential due to multiple point charges. First a single point charge is discussed, then four positive charges, then an electric quadrupole. Students draw the equipotential curves in the plane of the charges, while also considering the 3D nature of equipotentials.

face Lecture

120 min.

Chemical potential and Gibbs distribution
Thermal and Statistical Physics 2020

chemical potential Gibbs distribution grand canonical ensemble statistical mechanics

These notes from the fifth week of Thermal and Statistical Physics cover the grand canonical ensemble. They include several small group activities.