Activities
These notes from week 6 of https://paradigms.oregonstate.edu/courses/ph441 cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.
Students practice identifying whether events on spacetime diagrams are simultaneous, colocated, or neither for different observers. Then students decide which of two events occurs first in two different reference frames.
Mathematica Activity
30 min.
Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.
Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.
Students move their left arm in a circle to trace out the complex plane (Argand diagram). They then explore the rectangular and exponential representations of complex numbers by using their left arm to show given complex numbers on the complex plane. Finally they enact multiplication of complex numbers in exponential form and complex conjugation.
This small whiteboard question (SWBQ) serves as a quick review of the dot product. It is also an opportunity to help students see the advantages of knowing many different representations of and facts about a physical concept.
This is the first activity relating the surfaces to the corresponding contour diagrams, thus emphasizing the use of multiple representations.
Students work in small groups to interpret level curves representing different concentrations of lead.
This small group activity using surfaces introduces a geometric interpretation of partial derivatives in terms of measured ratios of small changes. Students work in small groups to identify locations on their surface with particular properties. The whole class wrap-up discussion emphasizes the equivalence of multiple representations of partial derivatives.