assignment Homework

Energy of a relativistic Fermi gas
Fermi gas Relativity Thermal and Statistical Physics 2020

For electrons with an energy \(\varepsilon\gg mc^2\), where \(m\) is the mass of the electron, the energy is given by \(\varepsilon\approx pc\) where \(p\) is the momentum. For electrons in a cube of volume \(V=L^3\) the momentum takes the same values as for a non-relativistic particle in a box.

  1. Show that in this extreme relativistic limit the Fermi energy of a gas of \(N\) electrons is given by \begin{align} \varepsilon_F &= \hbar\pi c\left(\frac{3n}{\pi}\right)^{\frac13} \end{align} where \(n\equiv \frac{N}{V}\) is the number density.

  2. Show that the total energy of the ground state of the gas is \begin{align} U_0 &= \frac34 N\varepsilon_F \end{align}

face Lecture

10 min.

Basics of heat engines
Contemporary Challenges 2022 (3 years) This brief lecture covers the basics of heat engines.

assignment Homework

Quantum concentration
bose-einstein gas statistical mechanics Thermal and Statistical Physics 2020 Consider one particle confined to a cube of side \(L\); the concentration in effect is \(n=L^{-3}\). Find the kinetic energy of the particle when in the ground state. There will be a value of the concentration for which this zero-point quantum kinetic energy is equal to the temperature \(kT\). (At this concentration the occupancy of the lowest orbital is of the order of unity; the lowest orbital always has a higher occupancy than any other orbital.) Show that the concentration \(n_0\) thus defined is equal to the quantum concentration \(n_Q\) defined by (63): \begin{equation} n_Q \equiv \left(\frac{MkT}{2\pi\hbar^2}\right)^{\frac32} \end{equation} within a factor of the order of unity.

assignment Homework

Nucleus in a Magnetic Field
Energy and Entropy 2021 (2 years)

Nuclei of a particular isotope species contained in a crystal have spin \(I=1\), and thus, \(m = \{+1,0,-1\}\). The interaction between the nuclear quadrupole moment and the gradient of the crystalline electric field produces a situation where the nucleus has the same energy, \(E=\varepsilon\), in the state \(m=+1\) and the state \(m=-1\), compared with an energy \(E=0\) in the state \(m=0\), i.e. each nucleus can be in one of 3 states, two of which have energy \(E=\varepsilon\) and one has energy \(E=0\).

  1. Find the Helmholtz free energy \(F = U-TS\) for a crystal containing \(N\) nuclei which do not interact with each other.

  2. Find an expression for the entropy as a function of temperature for this system. (Hint: use results of part a.)

  3. Indicate what your results predict for the entropy at the extremes of very high temperature and very low temperature.

assignment Homework

Entropy and Temperature
Energy Temperature Ideal gas Entropy Thermal and Statistical Physics 2020

Suppose \(g(U) = CU^{3N/2}\), where \(C\) is a constant and \(N\) is the number of particles.

  1. Show that \(U=\frac32 N k_BT\).

  2. Show that \(\left(\frac{\partial^2S}{\partial U^2}\right)_N\) is negative. This form of \(g(U)\) actually applies to a monatomic ideal gas.

face Lecture

30 min.

Equipartition theorem
Contemporary Challenges 2022 (3 years)

equipartition heat capacity

This lecture introduces the equipartition theorem.

assignment Homework

Spring Force Constant
Energy and Entropy 2021 (2 years) The spring constant \(k\) for a one-dimensional spring is defined by: \[F=k(x-x_0).\] Discuss briefly whether each of the variables in this equation is extensive or intensive.

groups Whole Class Activity

10 min.

Air Hockey
Central Forces 2022 (2 years)

central forces potential energy classical mechanics

Students observe the motion of a puck tethered to the center of the airtable. Then they plot the potential energy for the puck on their small whiteboards. A class discussion follows based on what students have written on their whiteboards.

group Small Group Activity

30 min.

Ideal Gas Model

Ideal Gas surfaces thermo

Students should be familiar with the basic definitions of pressure, volume, temperature, and internal energy.

assignment Homework

Gibbs sum for a two level system
Gibbs sum Microstate Thermal average energy Thermal and Statistical Physics 2020
  1. Consider a system that may be unoccupied with energy zero, or occupied by one particle in either of two states, one of energy zero and one of energy \(\varepsilon\). Find the Gibbs sum for this system is in terms of the activity \(\lambda\equiv e^{\beta\mu}\). Note that the system can hold a maximum of one particle.

  2. Solve for the thermal average occupancy of the system in terms of \(\lambda\).

  3. Show that the thermal average occupancy of the state at energy \(\varepsilon\) is \begin{align} \langle N(\varepsilon)\rangle = \frac{\lambda e^{-\frac{\varepsilon}{kT}}}{\mathcal{Z}} \end{align}

  4. Find an expression for the thermal average energy of the system.

  5. Allow the possibility that the orbitals at \(0\) and at \(\varepsilon\) may each be occupied each by one particle at the same time; Show that \begin{align} \mathcal{Z} &= 1 + \lambda + \lambda e^{-\frac{\varepsilon}{kT}} + \lambda^2 e^{-\frac{\varepsilon}{kT}} \\ &= (1+\lambda)\left(1+e^{-\frac{\varepsilon}{kT}}\right) \end{align} Because \(\mathcal{Z}\) can be factored as shown, we have in effect two independent systems.

assignment Homework

Paramagnetism
Energy Temperature Paramagnetism Thermal and Statistical Physics 2020 Find the equilibrium value at temperature \(T\) of the fractional magnetization \begin{equation} \frac{\mu_{tot}}{Nm} \equiv \frac{2\langle s\rangle}{N} \end{equation} of a system of \(N\) spins each of magnetic moment \(m\) in a magnetic field \(B\). The spin excess is \(2s\). The energy of this system is given by \begin{align} U &= -\mu_{tot}B \end{align} where \(\mu_{tot}\) is the total magnetization. Take the entropy as the logarithm of the multiplicity \(g(N,s)\) as given in (1.35 in the text): \begin{equation} S(s) \approx k_B\log g(N,0) - k_B\frac{2s^2}{N} \end{equation} for \(|s|\ll N\), where \(s\) is the spin excess, which is related to the magnetization by \(\mu_{tot} = 2sm\). Hint: Show that in this approximation \begin{equation} S(U) = S_0 - k_B\frac{U^2}{2m^2B^2N}, \end{equation} with \(S_0=k_B\log g(N,0)\). Further, show that \(\frac1{kT} = -\frac{U}{m^2B^2N}\), where \(U\) denotes \(\langle U\rangle\), the thermal average energy.

assignment Homework

Surface temperature of the Earth
Temperature Radiation Thermal and Statistical Physics 2020 Calculate the temperature of the surface of the Earth on the assumption that as a black body in thermal equilibrium it reradiates as much thermal radiation as it receives from the Sun. Assume also that the surface of the Earth is a constant temperature over the day-night cycle. Use the sun's surface temperature \(T_{\odot}=5800\text{K}\); and the sun's radius \(R_{\odot}=7\times 10^{10}\text{cm}\); and the Earth-Sun distance of \(1.5\times 10^{13}\text{cm}\).

assignment Homework

Building the PDM: Instructions
PDM Energy and Entropy 2021 (2 years) In your kits for the Portable Partial Derivative Machine should be the following:
  • A 1ft by 1ft board with 5 holes and measuring tapes (the measuring tapes will be on the top side)
  • 2 S-hooks
  • A spring with 3 strings attached
  • 2 small cloth bags
  • 4 large ball bearings
  • 8 small ball bearings
  • 2 vertical clamp pulleys
  • A ziploc bag containing
    • 5 screws
    • 5 hex nuts
    • 5 washers
    • 5 wing nuts
    • 2 horizontal pulleys
To assemble the Portable PDM, start by placing the PDM on a table surface with the measuring tapes perpendicular to the table's edge and the board edge with 3 holes closest to you.
  1. one screw should be put through each hole so that the threads stick out through the top side of the board. Next use a hex nut to secure each screw in place. It is not critical that they be screwed on any more than you can comfortably manage by hand.
  2. After securing all 5 screws in place with a hex nut, put a washer on each screw.
  3. Slide a horizontal pulley onto screws 1 and 2 (as labeled above).
  4. On all 5 screws, add a wing nut to secure the other pieces. Again, it does not need to be tightened all the way as long as it is secure enough that nothing will fall off.
  5. Using the middle wingnut/washer/screw (Screw 4), clamp the shortest of the strings tied to the spring.
  6. Loop the remaining 2 looped-ends of string around the horizontal pulleys and along the measuring tape.
  7. Using the string as a guide, clamp the vertical pulleys into place on the edge of the board.
  8. Through the looped-end of each string, place 1 S-hook.
  9. Put the other end of each s-hook through the hole in the small cloth bag.
Here is a poor photo of the final result, which doesn't show the two vertical pulleys. If you would like, you could view a video of the building process.

assignment Homework

Free energy of a two state system
Helmholtz free energy entropy statistical mechanics Thermal and Statistical Physics 2020
  1. Find an expression for the free energy as a function of \(T\) of a system with two states, one at energy 0 and one at energy \(\varepsilon\).

  2. From the free energy, find expressions for the internal energy \(U\) and entropy \(S\) of the system.

  3. Plot the entropy versus \(T\). Explain its asymptotic behavior as the temperature becomes high.

  4. Plot the \(S(T)\) versus \(U(T)\). Explain the maximum value of the energy \(U\).

group Small Group Activity

30 min.

de Broglie wavelength after freefall
Contemporary Challenges 2022 (3 years)

de Broglie wavelength gravity

In this activity students combine energy conservation with the relationship between the de Broglie wavelength and momentum to find the wavelength of atoms that have been dropped a given distance.

group Small Group Activity

30 min.

Black space capsule
Contemporary Challenges 2022 (2 years)

stefan-boltzmann blackbody radiation

In this activity, students apply the Stefan-Boltzmann equation and the principle of energy balance in steady state to find the steady state temperature of a black object in near-Earth orbit.

face Lecture

5 min.

Central Forces Introduction: Lecture Notes
Central Forces 2022

assignment Homework

Centrifuge
Centrifugal potential Thermal and Statistical Physics 2020 A circular cylinder of radius \(R\) rotates about the long axis with angular velocity \(\omega\). The cylinder contains an ideal gas of atoms of mass \(M\) at temperature \(T\). Find an expression for the dependence of the concentration \(n(r)\) on the radial distance \(r\) from the axis, in terms of \(n(0)\) on the axis. Take \(\mu\) as for an ideal gas.

assignment Homework

Free energy of a harmonic oscillator
Helmholtz free energy harmonic oscillator Thermal and Statistical Physics 2020

A one-dimensional harmonic oscillator has an infinite series of equally spaced energy states, with \(\varepsilon_n = n\hbar\omega\), where \(n\) is an integer \(\ge 0\), and \(\omega\) is the classical frequency of the oscillator. We have chosen the zero of energy at the state \(n=0\) which we can get away with here, but is not actually the zero of energy! To find the true energy we would have to add a \(\frac12\hbar\omega\) for each oscillator.

  1. Show that for a harmonic oscillator the free energy is \begin{equation} F = k_BT\log\left(1 - e^{-\frac{\hbar\omega}{k_BT}}\right) \end{equation} Note that at high temperatures such that \(k_BT\gg\hbar\omega\) we may expand the argument of the logarithm to obtain \(F\approx k_BT\log\left(\frac{\hbar\omega}{kT}\right)\).

  2. From the free energy above, show that the entropy is \begin{equation} \frac{S}{k_B} = \frac{\frac{\hbar\omega}{kT}}{e^{\frac{\hbar\omega}{kT}}-1} - \log\left(1-e^{-\frac{\hbar\omega}{kT}}\right) \end{equation}

    Entropy of a simple harmonic oscillator
    Heat capacity of a simple harmonic oscillator
    This entropy is shown in the nearby figure, as well as the heat capacity.

group Small Group Activity

30 min.

Name the experiment
Energy and Entropy 2021 (3 years)

partial derivatives experiment thermodynamics

Student groups design an experiment that measures an assigned partial derivative. In a compare-and-contrast wrap-up, groups report on how they would measure their derivatives.