Search

 

Results: Gravitational Force

group Small Group Activity

30 min.

Gravitational Force

Mechanics Gravitational Force Gravitational Potential Energy Derivatives Introductory Physics

Students examine a plastic "surface" graph of the gravitational potential energy of a Earth-satellite system to make connections between gravitational force and gravitational potential energy.

assignment Homework

Central Force

Which of the following forces can be central forces? which cannot?

  1. The force on a test mass \(m\) in a gravitational field \(\vec{g~}\), i.e. \(m\vec g\)
  2. The force on a test charge \(q\) in an electric field \(\vec E\), i.e. \(q\vec E\)
  3. The force on a test charge \(q\) moving at velocity \(\vec{v~}\) in a magnetic field \(\vec B\), i.e. \(q\vec v \times \vec B\)

assignment Homework

Potential vs. Potential Energy

In this course, two of the primary examples we will be using are the potential due to gravity and the potential due to an electric charge. Both of these forces vary like \(\frac{1}{r}\), so they will have many, many similarities. Most of the calculations we do for the one case will be true for the other. But there are some extremely important differences:

  1. Find the value of the electrostatic potential energy of a system consisting of a hydrogen nucleus and an electron separated by the Bohr radius. Find the value of the gravitational potential energy of the same two particles at the same radius. Use the same system of units in both cases. Compare and the contrast the two answers.
  2. Find the value of the electrostatic potential due to the nucleus of a hydrogen atom at the Bohr radius. Find the gravitational potential due to the nucleus at the same radius. Use the same system of units in both cases. Compare and contrast the two answers.
  3. Briefly discuss at least one other fundamental difference between electromagnetic and gravitational systems. Hint: Why are we bound to the earth gravitationally, but not electromagnetically?

group Small Group Activity

60 min.

Gravitational Potential Energy

Mechanics Gravitational Potential Energy Zero of Potential Introductory Physics

Students examine a plastic “surface” graph of the gravitational potential energy of an Earth-satellite system to explore the properties of gravitational potential energy for a spherically symmetric system.

computer Mathematica Activity

30 min.

Effective Potentials
Students use a pre-written Mathematica notebook or a Geogebra applet to explore how the shape of the effective potential function changes as the various parameters (angular momentum, force constant, reduced mass) are varied.

group Small Group Activity

10 min.

Survivor Outer Space: A kinesthetic approach to (re)viewing center-of-mass
A group of students, tethered together, are floating freely in outer space. Their task is to devise a method to reach a food cache some distance from their group.

groups Whole Class Activity

10 min.

Air Hockey
Students observe the motion of a puck tethered to the center of the airtable. Then they plot the potential energy for the puck on their small whiteboards. A class discussion follows based on what students have written on their whiteboards.