Activities
These notes from week 6 of https://paradigms.oregonstate.edu/courses/ph441 cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.
Problem
Consider one mole of an ideal monatomic gas at 300K and 1 atm. First, let the gas expand isothermally and reversibly to twice the initial volume; second, let this be followed by an isentropic expansion from twice to four times the original volume.
How much heat (in joules) is added to the gas in each of these two processes?
What is the temperature at the end of the second process?
Suppose the first process is replaced by an irreversible expansion into a vacuum, to a total volume twice the initial volume. What is the increase of entropy in the irreversible expansion, in J/K?
Problem
Find the chemical potential of an ideal monatomic gas in two dimensions, with \(N\) atoms confined to a square of area \(A=L^2\). The spin is zero.
Find an expression for the energy \(U\) of the gas.
Find an expression for the entropy \(\sigma\). The temperature is \(kT\).
Students consider whether the thermo surfaces reflect the properties of an ideal gas.
These lecture notes from week 7 of https://paradigms.oregonstate.edu/courses/ph441 apply the grand canonical ensemble to fermion and bosons ideal gasses. They include a few small group activities.
Problem
Consider an ideal gas of \(N\) particles, each of mass \(M\), confined to a one-dimensional line of length \(L\). The particles have spin zero (so you can ignore spin) and do not interact with one another. Find the entropy at temperature \(T\). You may assume that the temperature is high enough that \(k_B T\) is much greater than the ground state energy of one particle.
Problem
Consider the bottle in a bottle problem in a previous problem set, summarized here. A small bottle of helium is placed inside a large bottle, which otherwise contains vacuum. The inner bottle contains a slow leak, so that the helium leaks into the outer bottle. The inner bottle contains one tenth the volume of the outer bottle, which is insulated.
The volume of the small bottle is 0.001 m23 and the volume of the big bottle is 0.01 m3. The initial state of the gas in the small bottle was \(p=106\) Pa and its temperature \(T=300\) K. Approximate the helium gas as an ideal gas of equations of state \(pV=Nk_BT\) and \(U=\frac32 Nk_BT\).
How many molecules of gas does the large bottle contain? What is the final temperature of the gas?
Compute the integral \(\int \frac{{\mathit{\unicode{273}}} Q}{T}\) and the change of entropy \(\Delta S\) between the initial state (gas in the small bottle) and the final state (gas leaked in the big bottle).
- Discuss your results.
Problem
Suppose \(g(U) = CU^{3N/2}\), where \(C\) is a constant and \(N\) is the number of particles.
Show that \(U=\frac32 N k_BT\).
Show that \(\left(\frac{\partial^2S}{\partial U^2}\right)_N\) is negative. This form of \(g(U)\) actually applies to a monatomic ideal gas.
Problem
A diesel engine requires no spark plug. Rather, the air in the cylinder is compressed so highly that the fuel ignites spontaneously when sprayed into the cylinder.
In this problem, you may treat air as an ideal gas, which satisfies the equation \(pV = Nk_BT\). You may also use the property of an ideal gas that the internal energy depends only on the temperature \(T\), i.e. the internal energy does not change for an isothermal process. For air at the relevant range of temperatures the heat capacity at fixed volume is given by \(C_V=\frac52Nk_B\), which means the internal energy is given by \(U=\frac52Nk_BT\).
Note: in this problem you are expected to use only the equations given and fundamental physics laws. Looking up the formula in a textbook is not considered a solution at this level.
If the air is initially at room temperature (taken as \(20^{o}C\)) and is then compressed adiabatically to \(\frac1{15}\) of the original volume, what final temperature is attained (before fuel injection)?
- By what factor does the pressure increase?
These notes, from the third week of https://paradigms.oregonstate.edu/courses/ph441 cover the canonical ensemble and Helmholtz free energy. They include a number of small group activities.
Students will determine the change in entropy (positive, negative, or none) for both the system and surroundings in three different cases. This is followed by an active whole-class discussion about where the entropy comes from during an irreversible process.
For electrons with an energy \(\varepsilon\gg mc^2\), where \(m\) is the mass of the electron, the energy is given by \(\varepsilon\approx pc\) where \(p\) is the momentum. For electrons in a cube of volume \(V=L^3\) the momentum takes the same values as for a non-relativistic particle in a box.
Show that in this extreme relativistic limit the Fermi energy of a gas of \(N\) electrons is given by \begin{align} \varepsilon_F &= \hbar\pi c\left(\frac{3n}{\pi}\right)^{\frac13} \end{align} where \(n\equiv \frac{N}{V}\) is the number density.
Show that the total energy of the ground state of the gas is \begin{align} U_0 &= \frac34 N\varepsilon_F \end{align}
Show that a Fermi electron gas in the ground state exerts a pressure \begin{align} p = \frac{\left(3\pi^2\right)^{\frac23}}{5} \frac{\hbar^2}{m}\left(\frac{N}{V}\right)^{\frac53} \end{align} In a uniform decrease of the volume of a cube every orbital has its energy raised: The energy of each orbital is proportional to \(\frac1{L^2}\) or to \(\frac1{V^{\frac23}}\).
Find an expression for the entropy of a Fermi electron gas in the region \(kT\ll \varepsilon_F\). Notice that \(S\rightarrow 0\) as \(T\rightarrow 0\).
Problem
(K&K 7.11) Show for a single orbital of a fermion system that \begin{align} \left<(\Delta N)^2\right> = \left<N\right>(1+\left<N\right>) \end{align} if \(\left<N\right>\) is the average number of fermions in that orbital. Notice that the fluctuation vanishes for orbitals with energies far enough from the chemical potential \(\mu\) so that \(\left<N\right>=1\) or \(\left<N\right>=0\).
In this entire problem, keep results to first order in the van der Waals correction terms \(a\) and $b.
Show that the entropy of the van der Waals gas is \begin{align} S &= Nk\left\{\ln\left(\frac{n_Q(V-Nb)}{N}\right)+\frac52\right\} \end{align}
Show that the energy is \begin{align} U &= \frac32 NkT - \frac{N^2a}{V} \end{align}
Show that the enthalpy \(H\equiv U+pV\) is \begin{align} H(T,V) &= \frac52NkT + \frac{N^2bkT}{V} - 2\frac{N^2a}{V} \\ H(T,p) &= \frac52NkT + Nbp - \frac{2Nap}{kT} \end{align}
Problem
Consider one particle confined to a cube of side \(L\); the concentration in effect is \(n=L^{-3}\). Find the kinetic energy of the particle when in the ground state. There will be a value of the concentration for which this zero-point quantum kinetic energy is equal to the temperature \(kT\). (At this concentration the occupancy of the lowest orbital is of the order of unity; the lowest orbital always has a higher occupancy than any other orbital.) Show that the concentration \(n_0\) thus defined is equal to the quantum concentration \(n_Q\) defined by (63): \begin{equation} n_Q \equiv \left(\frac{MkT}{2\pi\hbar^2}\right)^{\frac32} \end{equation} within a factor of the order of unity.
Consider a column of atoms each of mass \(M\) at temperature \(T\) in a uniform gravitational field \(g\). Find the thermal average potential energy per atom. The thermal average kinetic energy is independent of height. Find the total heat capacity per atom. The total heat capacity is the sum of contributions from the kinetic energy and from the potential energy. Take the zero of the gravitational energy at the bottom \(h=0\) of the column. Integrate from \(h=0\) to \(h=\infty\). You may assume the gas is ideal.