title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Small Group Activity

30 min.

Charged Sphere
Students use a plastic surface representing the potential due to a charged sphere to explore the electrostatic potential, equipotential lines, and the relationship between potential and electric field.

Small Group Activity

30 min.

Gravitational Force
Students examine a plastic "surface" graph of the gravitational potential energy of a Earth-satellite system to make connections between gravitational force and gravitational potential energy.

Small Group Activity

60 min.

Gravitational Potential Energy
Students examine a plastic “surface” graph of the gravitational potential energy of an Earth-satellite system to explore the properties of gravitational potential energy for a spherically symmetric system.

Problem

5 min.

Introductory Email
Send me an email briefly introducing yourself.
  • What name (and pronouns, optional) do you want for me to call you in class?
  • Why are you taking the course?
  • What is an interesting thing about you that is not related to class?
  • What is one thing that you struggled with in your life that you found a way to overcome?
  • Found in: Central Forces course(s)
This is really a handout, which gives students guidelines on how to type up physics content.
  • typography
    Found in: Contemporary Challenges course(s)

Lecture

30 min.

Review of Thermal Physics
These are notes, essentially the equation sheet, from the final review session for https://paradigms.oregonstate.edu/courses/ph441.

As discussed in class, we can consider a black body as a large box with a small hole in it. If we treat the large box a metal cube with side length \(L\) and metal walls, the frequency of each normal mode will be given by: \begin{align} \omega_{n_xn_yn_z} &= \frac{\pi c}{L}\sqrt{n_x^2 + n_y^2 + n_z^2} \end{align} where each of \(n_x\), \(n_y\), and \(n_z\) will have positive integer values. This simply comes from the fact that a half wavelength must fit in the box. There is an additional quantum number for polarization, which has two possible values, but does not affect the frequency. Note that in this problem I'm using different boundary conditions from what I use in class. It is worth learning to work with either set of quantum numbers. Each normal mode is a harmonic oscillator, with energy eigenstates \(E_n = n\hbar\omega\) where we will not include the zero-point energy \(\frac12\hbar\omega\), since that energy cannot be extracted from the box. (See the Casimir effect for an example where the zero point energy of photon modes does have an effect.)

Note
This is a slight approximation, as the boundary conditions for light are a bit more complicated. However, for large \(n\) values this gives the correct result.

  1. Show that the free energy is given by \begin{align} F &= 8\pi \frac{V(kT)^4}{h^3c^3} \int_0^\infty \ln\left(1-e^{-\xi}\right)\xi^2d\xi \\ &= -\frac{8\pi^5}{45} \frac{V(kT)^4}{h^3c^3} \\ &= -\frac{\pi^2}{45} \frac{V(kT)^4}{\hbar^3c^3} \end{align} provided the box is big enough that \(\frac{\hbar c}{LkT}\ll 1\). Note that you may end up with a slightly different dimensionless integral that numerically evaluates to the same result, which would be fine. I also do not expect you to solve this definite integral analytically, a numerical confirmation is fine. However, you must manipulate your integral until it is dimensionless and has all the dimensionful quantities removed from it!

  2. Show that the entropy of this box full of photons at temperature \(T\) is \begin{align} S &= \frac{32\pi^5}{45} k V \left(\frac{kT}{hc}\right)^3 \\ &= \frac{4\pi^2}{45} k V \left(\frac{kT}{\hbar c}\right)^3 \end{align}

  3. Show that the internal energy of this box full of photons at temperature \(T\) is \begin{align} \frac{U}{V} &= \frac{8\pi^5}{15}\frac{(kT)^4}{h^3c^3} \\ &= \frac{\pi^2}{15}\frac{(kT)^4}{\hbar^3c^3} \end{align}

Small White Board Question

10 min.

Vector Differential--Rectangular

In this introductory lecture/SWBQ, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in rectangular coordinates for coordinate equals constant paths.

This activity can be done as a mini-lecture/SWBQ as an introduction to Vector Differential--Curvilinear where students find the vector differential in cylindrical and spherical coordinates..