Activities
Students explore what linear transformation matrices do to vectors. The whole class discussion compares & contrasts several different types of transformations (rotation, flip, projections, “scrinch”, scale) and how the properties of the matrices (the determinant, symmetries, which vectors are unchanged) are related to these transformations.
Kinesthetic
30 min.
Students, working in pairs, represent two component complex vectors with their left arms. Through a short series of instructor led prompts, students move their left arms to show how various linear transformations affect each complex component.
These lecture notes from the ninth week of https://paradigms.oregonstate.edu/courses/ph441 cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.
Review, as much as necessary, how to do matrix addition, multiplication of a matrix by a scalar, matrix multiplication, determinant of a matrix (\(2\times 2\) and \(3\times 3\)), and inverse of a matrix (\(2\times 2\) only). You might find the information at the following links useful.
There is nothing to turn in, but it will help you get familiar with the linear algebra that we will frequently use in this course.
None
Inhomogeneous, linear ODEs with constant coefficients are among the most straigtforward to solve, although the algebra can get messy. This content should have been covered in your Differential Equations course (MTH 256 or equiv.). If you need a review, please see: The Method for Inhomogeneous Equations or your differential equations text.
The general solution of the homogeneous differential equation
\[\ddot{x}-\dot{x}-6 x=0\]
is
\[x(t)=A\, e^{3t}+ B\, e^{-2t}\]
where \(A\) and \(B\) are arbitrary constants that would be determined by the initial conditions of the problem.
Find a particular solution of the inhomogeneous differential equation \(\ddot{x}-\dot{x}-6 x=-25\sin(4 t)\).
Find the general solution of \(\ddot{x}-\dot{x}-6 x=-25\sin(4 t)\).
Some terms in your general solution have an undetermined coefficients, while some coefficients are fully determined. Explain what is different about these two cases.
Find a particular solution of \(\ddot{x}-\dot{x}-6 x=12 e^{-3 t}\)
Find the general solution of \(\ddot{x}-\dot{x}-6 x=12 e^{-3 t}-25\sin(4 t)\)
How is this general solution related to the particular solutions you found in the previous parts of this question?
Can you add these particular solutions together with arbitrary coefficients to get a new particular solution?
- Sense-making: Check your answer; Explicitly plug in your final answer in part (e) and check that it satisfies the differential equation.
Inhomogeneous, linear ODEs with constant coefficients are among the most straigtforward to solve, although the algebra can get messy. This content should have been covered in your Differential Equations course (MTH 256 or equiv.). If you need a review, please see: The Method for Inhomogeneous Equations or your differential equations text.
For the following inhomogeneous linear equation with constant coefficients, find the general solution for \(y(x)\).
\[y''+2y'-y=\sin{x} +\cos{2x}\]
Problem
Consider a collection of three charges arranged in a line along the \(z\)-axis: charges \(+Q\) at \(z=\pm D\) and charge \(-2Q\) at \(z=0\).
Find the electrostatic potential at a point \(\vec{r}\) on the \(x\)-axis at a distance \(x\) from the center of the quadrupole.
A series of charges arranged in this way is called a linear quadrupole. Why?
Homogeneous, linear ODEs with constant coefficients were likely covered in your Differential Equations course (MTH 256 or equiv.). If you need a review, please see:
Constant Coefficients, Homogeneous
or your differential equations text.
Answer the following questions for each differential equation below:
Each equation has different notations so that you can become familiar with some common notations.
- identify the order of the equation,
- find the number of linearly independent solutions,
- find an appropriate set of linearly independent solutions, and
- find the general solution.
- \(\ddot{x}-\dot{x}-6x=0\)
- \(y^{\prime\prime\prime}-3y^{\prime\prime}+3y^{\prime}-y=0\)
- \(\frac{d^2w}{dz^2}-4\frac{dw}{dz}+5w=0\)
Students work in small groups to use the superposition principle \[V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}\] to find an integral expression for the electrostatic potential, \(V(\vec{r})\), everywhere in space, due to a ring of charge.
In an optional extension, students find a series expansion for \(V(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.
Students consider projectile motion of an object that experiences drag force that in linear with the velocity. Students consider the horizontal motion and the vertical motion separately. Students solve Newton's 2nd law as a differential equation.
Students, pretending they are point charges, move around the room acting out various prompts from the instructor regarding charge densities, including linear \(\lambda\), surface \(\sigma\), and volume \(\rho\) charge densities, both uniform and non-uniform. The instructor demonstrates what it means to measure these quantities. In a remote setting, we have students manipulate 10 coins to model the prompts in this activity and we demonstrate the answers with coins under a doc cam.
Students observe three different plots of linear combinations of spherical combinations with probability density represented by color on the sphere, distance from the origin (polar plot), and distance from the surface of the sphere.
Students are asked to:
- Test to see if one of the given functions is an eigenfunction of the given operator
- See if they can write the functions that are found not to be eigenfunctions as a linear combination of eigenfunctions.
Students, pretending they are point charges, move around the room so as to make an imaginary magnetic field meter register a constant magnetic field, introducing the concept of steady current. Students act out linear \(\vec{I}\), surface \(\vec{K}\), and volume \(\vec{J}\) current densities. The instructor demonstrates what it means to measure these quantities by counting how many students pass through a gate.
Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.
Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.
Mathematica Activity
30 min.
Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.
- how to distinguish the two different uses of the word “linear” in a linear charge density that varies linearly;
- some of the words for describing functional variation: linear, quadratic, exponential, falls off like ..., proportional to the square, etc.
- how to “name the thing you don't know” with an algebraic symbol so that it can appear in an equation.