title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Problem

5 min.

Magnetic susceptibility

Consider a paramagnet, which is a material with \(n\) spins per unit volume each of which may each be either “up” or “down”. The spins have energy \(\pm mB\) where \(m\) is the magnetic dipole moment of a single spin, and there is no interaction between spins. The magnetization \(M\) is defined as the total magnetic moment divided by the total volume. Hint: each individual spin may be treated as a two-state system, which you have already worked with above.

Plot of magnetization vs. B field

  1. Find the Helmholtz free energy of a paramagnetic system (assume \(N\) total spins) and show that \(\frac{F}{NkT}\) is a function of only the ratio \(x\equiv \frac{mB}{kT}\).

  2. Use the canonical ensemble (i.e. partition function and probabilities) to find an exact expression for the total magentization \(M\) (which is the total dipole moment per unit volume) and the susceptibility \begin{align} \chi\equiv\left(\frac{\partial M}{\partial B}\right)_T \end{align} as a function of temperature and magnetic field for the model system of magnetic moments in a magnetic field. The result for the magnetization is \begin{align} M=nm\tanh\left(\frac{mB}{kT}\right) \end{align} where \(n\) is the number of spins per unit volume. The figure shows what this magnetization looks like.

  3. Show that the susceptibility is \(\chi=\frac{nm^2}{kT}\) in the limit \(mB\ll kT\).

Students work in small groups to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

Small White Board Question

30 min.

Magnetic Moment & Stern-Gerlach Experiments
Students consider the relation (1) between the angular momentum and magnetic moment for a current loop and (2) the force on a magnetic moment in an inhomogeneous magnetic field. Students make a (classical) prediction of the outcome of a Stern-Gerlach experiment.

Students work in small groups to use the Biot-Savart law \[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

Kinesthetic

10 min.

Acting Out Current Density
Students, pretending they are point charges, move around the room so as to make an imaginary magnetic field meter register a constant magnetic field, introducing the concept of steady current. Students act out linear \(\vec{I}\), surface \(\vec{K}\), and volume \(\vec{J}\) current densities. The instructor demonstrates what it means to measure these quantities by counting how many students pass through a gate.

Nuclei of a particular isotope species contained in a crystal have spin \(I=1\), and thus, \(m = \{+1,0,-1\}\). The interaction between the nuclear quadrupole moment and the gradient of the crystalline electric field produces a situation where the nucleus has the same energy, \(E=\varepsilon\), in the state \(m=+1\) and the state \(m=-1\), compared with an energy \(E=0\) in the state \(m=0\), i.e. each nucleus can be in one of 3 states, two of which have energy \(E=\varepsilon\) and one has energy \(E=0\).

  1. Find the Helmholtz free energy \(F = U-TS\) for a crystal containing \(N\) nuclei which do not interact with each other.

  2. Find an expression for the entropy as a function of temperature for this system. (Hint: use results of part a.)

  3. Indicate what your results predict for the entropy at the extremes of very high temperature and very low temperature.

  • Found in: Energy and Entropy course(s)
Consider the magnetic field \[ \vec{B}(s,\phi,z)= \begin{cases} 0&0\le s<a\\ \alpha \frac{1}{s}(s^4-a^4)\, \hat{\phi}&a<s<b\\ 0&s>b \end{cases} \]
  1. (2pts) Use step and/or delta functions to write this magnetic field as a single expression valid everywhere in space.
  2. (4pts) Find a formula for the current density that creates this magnetic field.
  3. (2pts) Interpret your formula for the current density, i.e. explain briefly in words where the current is.
  • Found in: AIMS Maxwell, Static Fields, Problem-Solving course(s)