assignment Homework

Volume Charge Density
Static Fields 2023 (6 years)

Sketch the volume charge density: \begin{equation} \rho (x,y,z)=c\,\delta (x-3) \end{equation}

assignment Homework

Gauss's Law for a Rod inside a Cube
Static Fields 2023 (4 years) Consider a thin charged rod of length \(L\) standing along the \(z\)-axis with the bottom end on the \(x,y\)-plane. The charge density \(\lambda_0\) is constant. Find the total flux of the electric field through a closed cubical surface with sides of length \(3L\) centered at the origin.

assignment Homework

Electric Field from a Rod
Static Fields 2023 (5 years) Consider a thin charged rod of length \(L\) standing along the \(z\)-axis with the bottom end on the \(xy\)-plane. The charge density \(\lambda\) is constant. Find the electric field at the point \((0,0,2L)\).

assignment Homework

Power Series Coefficients A
Static Fields 2023 (6 years) Use the formula for a Taylor series: \[f(z)=\sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n f(a)}{dz^n} (z-a)^n\] to find the series expansion for \(f(z)=e^{-kz}\) to second order around \(z=3\).

assignment Homework

Gradient Practice

Gradient Sequence

Static Fields 2023 (4 years)

Find the gradient of each of the following functions:

  1. \begin{equation} f(x,y,z)=e^{(x+y)}+x^2 y^3 \ln \frac{x}{z} \end{equation}
  2. \begin{equation} \sigma(\theta,\phi)=\cos\theta \sin^2\phi \end{equation}
  3. \begin{equation} \rho(s,\phi,z)=(s+3z)^2\cos\phi \end{equation}

assignment Homework

Current in a Wire
Static Fields 2023 (4 years) The current density in a cylindrical wire of radius \(R\) is given by \(\vec{J}(\vec{r})=\alpha s^3\cos^2\phi\,\hat{z}\). Find the total current in the wire.

assignment Homework

Power Series Coefficients B
Static Fields 2023 (6 years) Use the formula for a Taylor series: \[f(z)=\sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n f(a)}{dz^n} (z-a)^n\] to find the series expansion for \(f(z)=\cos(kz)\) to second order around \(z=2\).

assignment Homework

Series Notation 2

Power Series Sequence (E&M)

Static Fields 2023 (6 years)

Write (a good guess for) the following series using sigma \(\left(\sum\right)\) notation. (If you only know a few terms of a series, you don't know for sure how the series continues.)

  1. \[1 - 2\,\theta^2 + 4\,\theta^4 - 8\,\theta^6 +\,\dots\]

  2. \[\frac14 - \frac19 + \frac{1}{16} - \frac{1}{25}+\,\dots\]

assignment Homework

Spherical Shell Step Functions
step function charge density Static Fields 2023 (6 years)

One way to write volume charge densities without using piecewise functions is to use step \((\Theta)\) or \(\delta\) functions. If you need to review this, see the following link in the math-physics book: https://paradigms.oregonstate.eduhttps://books.physics.oregonstate.edu/GMM/step.html

Consider a spherical shell with charge density \(\rho (\vec{r})=\alpha3e^{(k r)^3}\) between the inner radius \(a\) and the outer radius \(b\). The charge density is zero everywhere else. Use step functions to write this charge density as a single function valid everywhere in space.

assignment Homework

Series Notation 1

Power Series Sequence (E&M)

Static Fields 2023 (6 years)

Write out the first four nonzero terms in the series:

  1. \[\sum\limits_{n=0}^\infty \frac{1}{n!}\]

  2. \[\sum\limits_{n=1}^\infty \frac{(-1)^n}{n!}\]
  3. \begin{equation} \sum\limits_{n=0}^\infty {(-2)^{n}\,\theta^{2n}} \end{equation}

assignment Homework

Volume Charge Density, Version 2
charge density delta function Static Fields 2023 (6 years)

You have a charge distribution on the \(x\)-axis composed of two point charges: one with charge \(+3q\) located at \(x=-d\) and the other with charge \(-q\) located at \(x=+d\).

  1. Sketch the charge distribution.
  2. Write an expression for the volume charge density \(\rho (\vec{r})\) everywhere in space.

assignment Homework

Mass Density
Static Fields 2023 (4 years) Consider a rod of length \(L\) lying on the \(z\)-axis. Find an algebraic expression for the mass density of the rod if the mass density at \(z=0\) is \(\lambda_0\) and at \(z=L\) is \(7\lambda_0\) and you know that the mass density increases
  • linearly;
  • like the square of the distance along the rod;
  • exponentially.

assignment Homework

Theta Parameters
Static Fields 2023 (6 years)

The function \(\theta(x)\) (the Heaviside or unit step function) is a defined as: \begin{equation} \theta(x) =\begin{cases} 1 & \textrm{for}\; x>0 \\ 0 & \textrm{for}\; x<0 \end{cases} \end{equation} This function is discontinuous at \(x=0\) and is generally taken to have a value of \(\theta(0)=1/2\).

Make sketches of the following functions, by hand, on axes with the same scale and domain. Briefly describe, using good scientific writing that includes both words and equations, the role that the number two plays in the shape of each graph: \begin{align} y &= \theta (x)\\ y &= 2+\theta (x)\\ y &= \theta(2+x)\\ y &= 2\theta (x)\\ y &= \theta (2x) \end{align}

assignment Homework

Flux through a Plane
Static Fields 2023 (4 years) Find the upward pointing flux of the vector field \(\boldsymbol{\vec{H}}=2z\,\boldsymbol{\hat{x}} +\frac{1}{x^2+1}\boldsymbol{\hat{y}}+(3+2z)\boldsymbol{\hat{z}}\) through the rectangle \(R\) with one edge along the \(y\) axis and the other in the \(xz\)-plane along the line \(z=x\), with \(0\le y\le2\) and \(0\le x\le3\).

assignment Homework

Total Current, Circular Cross Section

Integration Sequence

Static Fields 2023 (5 years)

A current \(I\) flows down a cylindrical wire of radius \(R\).

  1. If it is uniformly distributed over the surface, give a formula for the surface current density \(\vec K\).
  2. If it is distributed in such a way that the volume current density, \(|\vec J|\), is inversely proportional to the distance from the axis, give a formula for \(\vec J\).

assignment Homework

Divergence
Static Fields 2023 (6 years)

Shown above is a two-dimensional vector field.

Determine whether the divergence at point A and at point C is positive, negative, or zero.

assignment Homework

Line Sources Using the Gradient

Gradient Sequence

Static Fields 2023 (6 years)
  1. Find the electric field around an infinite, uniformly charged, straight wire, starting from the following expression for the electrostatic potential: \begin{equation} V(\vec r)=\frac{2\lambda}{4\pi\epsilon_0}\, \ln\left( \frac{ s_0}{s} \right) \end{equation}

computer Mathematica Activity

30 min.

Visualising the Gradient
Static Fields 2023 (7 years)

Gradient Sequence

Students use prepared Sage code to predict the gradient from contour graphs of 2D scalar fields.

assignment Homework

Vector Sketch (Rectangular Coordinates)
vector fields Static Fields 2023 (4 years) Sketch each of the vector fields below.
  1. \(\boldsymbol{\vec F} =-y\,\boldsymbol{\hat x} + x\,\boldsymbol{\hat y}\)
  2. \(\boldsymbol{\vec G} = x\,\boldsymbol{\hat x} + y\,\boldsymbol{\hat y}\)
  3. \(\boldsymbol{\vec H} = y\,\boldsymbol{\hat x} + x\,\boldsymbol{\hat y}\)

assignment Homework

The puddle
differentials Static Fields 2023 (6 years) The depth of a puddle in millimeters is given by \[h=\frac{1}{10} \bigl(1+\sin(\pi xy)\bigr)\] Your path through the puddle is given by \[x=3t \qquad y=4t\] and your current position is \(x=3\), \(y=4\), with \(x\) and \(y\) also in millimeters, and \(t\) in seconds.
  1. At your current position, how fast is the depth of water through which you are walking changing per unit time?
  2. At your current position, how fast is the depth of water through which you are walking changing per unit distance?
  3. FOOD FOR THOUGHT (optional)
    There is a walkway over the puddle at \(x=10\). At your current position, how fast is the depth of water through which you are walking changing per unit distance towards the walkway.