1. Show that a Fermi electron gas in the ground state exerts a pressure \begin{align} p = \frac{\left(3\pi^2\right)^{\frac23}}{5} \frac{\hbar^2}{m}\left(\frac{N}{V}\right)^{\frac53} \end{align} In a uniform decrease of the volume of a cube every orbital has its energy raised: The energy of each orbital is proportional to \(\frac1{L^2}\) or to \(\frac1{V^{\frac23}}\).

  2. Find an expression for the entropy of a Fermi electron gas in the region \(kT\ll \varepsilon_F\). Notice that \(S\rightarrow 0\) as \(T\rightarrow 0\).

  • Found in: Thermal and Statistical Physics course(s)
Consider one particle confined to a cube of side \(L\); the concentration in effect is \(n=L^{-3}\). Find the kinetic energy of the particle when in the ground state. There will be a value of the concentration for which this zero-point quantum kinetic energy is equal to the temperature \(kT\). (At this concentration the occupancy of the lowest orbital is of the order of unity; the lowest orbital always has a higher occupancy than any other orbital.) Show that the concentration \(n_0\) thus defined is equal to the quantum concentration \(n_Q\) defined by (63): \begin{equation} n_Q \equiv \left(\frac{MkT}{2\pi\hbar^2}\right)^{\frac32} \end{equation} within a factor of the order of unity.
  • Found in: Thermal and Statistical Physics course(s)
  1. Consider a system that may be unoccupied with energy zero, or occupied by one particle in either of two states, one of energy zero and one of energy \(\varepsilon\). Find the Gibbs sum for this system is in terms of the activity \(\lambda\equiv e^{\beta\mu}\). Note that the system can hold a maximum of one particle.

  2. Solve for the thermal average occupancy of the system in terms of \(\lambda\).

  3. Show that the thermal average occupancy of the state at energy \(\varepsilon\) is \begin{align} \langle N(\varepsilon)\rangle = \frac{\lambda e^{-\frac{\varepsilon}{kT}}}{\mathcal{Z}} \end{align}

  4. Find an expression for the thermal average energy of the system.

  5. Allow the possibility that the orbitals at \(0\) and at \(\varepsilon\) may each be occupied each by one particle at the same time; Show that \begin{align} \mathcal{Z} &= 1 + \lambda + \lambda e^{-\frac{\varepsilon}{kT}} + \lambda^2 e^{-\frac{\varepsilon}{kT}} \\ &= (1+\lambda)\left(1+e^{-\frac{\varepsilon}{kT}}\right) \end{align} Because \(\mathcal{Z}\) can be factored as shown, we have in effect two independent systems.

  • Found in: Thermal and Statistical Physics course(s)
Show that the plane polar coordinates are equivalent to spherical coordinates if we make the choices:
  1. The direction of \(\theta=0\) in spherical coordinates is the same as the direction of out of the plane in plane polar coordinates.
  2. Given the correspondance above, then if we choose the \(\theta\) of spherical coordinates is to be \(\pi/2\), we restrict to the equatorial plane of spherical coordinates.
  • Found in: Central Forces course(s)

group Small Group Activity

30 min.

Black space capsule
In this activity, students apply the Stefan-Boltzmann equation and the principle of energy balance in steady state to find the steady state temperature of a black object in near-Earth orbit.
  1. Find the chemical potential of an ideal monatomic gas in two dimensions, with \(N\) atoms confined to a square of area \(A=L^2\). The spin is zero.

  2. Find an expression for the energy \(U\) of the gas.

  3. Find an expression for the entropy \(\sigma\). The temperature is \(kT\).

  • Found in: Thermal and Statistical Physics course(s)

face Lecture

120 min.

Ideal Gas
These notes from week 6 of Thermal and Statistical Physics cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.

group Small Group Activity

60 min.

Gravitational Potential Energy
Students examine a plastic “surface” graph of the gravitational potential energy of an Earth-satellite system to explore the properties of gravitational potential energy for a spherically symmetric system.

face Lecture

10 min.

Introduction to Central Forces
  • Found in: Central Forces course(s)

None

Hockey

(Synthesis Problem: Brings together several different concepts from this unit.) Use effective potential diagrams for other than \(1/r^2\) forces.

Consider the frictionless motion of a hockey puck of mass \(m\) on a perfectly circular bowl-shaped ice rink with radius \(a\). The central region of the bowl (\(r < 0.8a\)) is perfectly flat and the sides of the ice bowl smoothly rise to a height \(h\) at \(r = a\).

  1. Draw a sketch of the potential energy for this system. Set the zero of potential energy at the top of the sides of the bowl.
  2. Situation 1: the puck is initially moving radially outward from the exact center of the rink. What minimum velocity does the puck need to escape the rink?
  3. Situation 2: a stationary puck, at a distance \(\frac{a}{2}\) from the center of the rink, is hit in such a way that it's initial velocity \(\vec v_0\) is perpendicular to its position vector as measured from the center of the rink. What is the total energy of the puck immediately after it is struck?
  4. In situation 2, what is the angular momentum of the puck immediately after it is struck?
  5. Draw a sketch of the effective potential for situation 2.
  6. In situation 2, for what minimum value of \(\vec v_0\) does the puck just escape the rink?

  • Found in: Central Forces course(s)

Einstein condensation temperature Starting from the density of free particle orbitals per unit energy range \begin{align} \mathcal{D}(\varepsilon) = \frac{V}{4\pi^2}\left(\frac{2M}{\hbar^2}\right)^{\frac32}\varepsilon^{\frac12} \end{align} show that the lowest temperature at which the total number of atoms in excited states is equal to the total number of atoms is \begin{align} T_E &= \frac1{k_B} \frac{\hbar^2}{2M} \left( \frac{N}{V} \frac{4\pi^2}{\int_0^\infty\frac{\sqrt{\xi}}{e^\xi-1}d\xi} \right)^{\frac23} T_E &= \end{align} The infinite sum may be numerically evaluated to be 2.612. Note that the number derived by integrating over the density of states, since the density of states includes all the states except the ground state.

Note: This problem is solved in the text itself. I intend to discuss Bose-Einstein condensation in class, but will not derive this result.

  • Found in: Thermal and Statistical Physics course(s)
Calculate the temperature of the surface of the Earth on the assumption that as a black body in thermal equilibrium it reradiates as much thermal radiation as it receives from the Sun. Assume also that the surface of the Earth is a constant temperature over the day-night cycle. Use the sun's surface temperature \(T_{\odot}=5800\text{K}\); and the sun's radius \(R_{\odot}=7\times 10^{10}\text{cm}\); and the Earth-Sun distance of \(1.5\times 10^{13}\text{cm}\).
  • Found in: Thermal and Statistical Physics course(s)