group Small Group Activity

30 min.

Black space capsule
Contemporary Challenges 2022 (3 years)

stefan-boltzmann blackbody radiation

In this activity, students apply the Stefan-Boltzmann equation and the principle of energy balance in steady state to find the steady state temperature of a black object in near-Earth orbit.

assignment Homework

Ideal gas in two dimensions
Ideal gas Entropy Chemical potential Thermal and Statistical Physics 2020
  1. Find the chemical potential of an ideal monatomic gas in two dimensions, with \(N\) atoms confined to a square of area \(A=L^2\). The spin is zero.

  2. Find an expression for the energy \(U\) of the gas.

  3. Find an expression for the entropy \(\sigma\). The temperature is \(kT\).

face Lecture

120 min.

Ideal Gas
Thermal and Statistical Physics 2020

ideal gas particle in a box grand canonical ensemble chemical potential statistical mechanics

These notes from week 6 of Thermal and Statistical Physics cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.

group Small Group Activity

60 min.

Gravitational Potential Energy

Mechanics Gravitational Potential Energy Zero of Potential Introductory Physics

Students examine a plastic “surface” graph of the gravitational potential energy of an Earth-satellite system to explore the properties of gravitational potential energy for a spherically symmetric system.

assignment Homework

Einstein condensation temperature
Einstein condensation Density Thermal and Statistical Physics 2020

Einstein condensation temperature Starting from the density of free particle orbitals per unit energy range \begin{align} \mathcal{D}(\varepsilon) = \frac{V}{4\pi^2}\left(\frac{2M}{\hbar^2}\right)^{\frac32}\varepsilon^{\frac12} \end{align} show that the lowest temperature at which the total number of atoms in excited states is equal to the total number of atoms is \begin{align} T_E &= \frac1{k_B} \frac{\hbar^2}{2M} \left( \frac{N}{V} \frac{4\pi^2}{\int_0^\infty\frac{\sqrt{\xi}}{e^\xi-1}d\xi} \right)^{\frac23} T_E &= \end{align} The infinite sum may be numerically evaluated to be 2.612. Note that the number derived by integrating over the density of states, since the density of states includes all the states except the ground state.

Note: This problem is solved in the text itself. I intend to discuss Bose-Einstein condensation in class, but will not derive this result.

assignment Homework

Hockey
Central Forces 2023 (3 years)

Consider the frictionless motion of a hockey puck of mass \(m\) on a perfectly circular bowl-shaped ice rink with radius \(a\). The central region of the bowl (\(r < 0.8a\)) is perfectly flat and the sides of the ice bowl smoothly rise to a height \(h\) at \(r = a\).

  1. Draw a sketch of the potential energy for this system. Set the zero of potential energy at the top of the sides of the bowl.
  2. Situation 1: the puck is initially moving radially outward from the exact center of the rink. What minimum velocity does the puck need to escape the rink?
  3. Situation 2: a stationary puck, at a distance \(\frac{a}{2}\) from the center of the rink, is hit in such a way that it's initial velocity \(\vec v_0\) is perpendicular to its position vector as measured from the center of the rink. What is the total energy of the puck immediately after it is struck?
  4. In situation 2, what is the angular momentum of the puck immediately after it is struck?
  5. Draw a sketch of the effective potential for situation 2.
  6. In situation 2, for what minimum value of \(\vec v_0\) does the puck just escape the rink?

assignment Homework

Surface temperature of the Earth
Temperature Radiation Thermal and Statistical Physics 2020 Calculate the temperature of the surface of the Earth on the assumption that as a black body in thermal equilibrium it reradiates as much thermal radiation as it receives from the Sun. Assume also that the surface of the Earth is a constant temperature over the day-night cycle. Use the sun's surface temperature \(T_{\odot}=5800\text{K}\); and the sun's radius \(R_{\odot}=7\times 10^{10}\text{cm}\); and the Earth-Sun distance of \(1.5\times 10^{13}\text{cm}\).