assignment Homework

Pressure and entropy of a degenerate Fermi gas
Fermi gas Pressure Entropy Thermal and Statistical Physics 2020
  1. Show that a Fermi electron gas in the ground state exerts a pressure \begin{align} p = \frac{\left(3\pi^2\right)^{\frac23}}{5} \frac{\hbar^2}{m}\left(\frac{N}{V}\right)^{\frac53} \end{align} In a uniform decrease of the volume of a cube every orbital has its energy raised: The energy of each orbital is proportional to \(\frac1{L^2}\) or to \(\frac1{V^{\frac23}}\).

  2. Find an expression for the entropy of a Fermi electron gas in the region \(kT\ll \varepsilon_F\). Notice that \(S\rightarrow 0\) as \(T\rightarrow 0\).

assignment Homework

Pressure of thermal radiation
Thermal radiation Pressure Thermal and Statistical Physics 2020

(modified from K&K 4.6) We discussed in class that \begin{align} p &= -\left(\frac{\partial F}{\partial V}\right)_T \end{align} Use this relationship to show that

  1. \begin{align} p &= -\sum_j \langle n_j\rangle\hbar \left(\frac{d\omega_j}{dV}\right), \end{align} where \(\langle n_j\rangle\) is the number of photons in the mode \(j\);

  2. Solve for the relationship between pressure and internal energy.

assignment Homework

Directional Derivative

Gradient Sequence

Static Fields 2022 (5 years)

You are on a hike. The altitude nearby is described by the function \(f(x, y)= k x^{2}y\), where \(k=20 \mathrm{\frac{m}{km^3}}\) is a constant, \(x\) and \(y\) are east and north coordinates, respectively, with units of kilometers. You're standing at the spot \((3~\mathrm{km},2~\mathrm{km})\) and there is a cottage located at \((1~\mathrm{km}, 2~\mathrm{km})\). You drop your water bottle and the water spills out.

  1. Plot the function \(f(x, y)\) and also its level curves in your favorite plotting software. Include images of these graphs. Special note: If you use a computer program written by someone else, you must reference that appropriately.
  2. In which direction in space does the water flow?
  3. At the spot you're standing, what is the slope of the ground in the direction of the cottage?
  4. Does your result to part (c) make sense from the graph?

group Small Group Activity

30 min.

Travelling wave solution
Contemporary Challenges 2022 (4 years)

travelling wave

Students work in a small group to write down an equation for a travelling wave.

assignment Homework

Coffees and Bagels and Net Worth
Energy and Entropy 2021 (2 years)

In economics, the term utility is roughly related to overall happiness. Many things affect your happiness, including the amount of money you have and the amount of coffee you drink. We cannot directly measure your happiness, but we can measure how much money you are willing to give up in order to obtain coffee or bagels. If we assume you choose wisely, we can thus determine that your happiness increases when you decrease your amount of money by that amount in exchange for increasing your coffee consumption. Thus money is a (poor) measure of happiness or utility.

Money is also a nice quantity because it is conserved---just like energy! You may gain or lose money, but you always do so by a transaction. (There are some exceptions to the conservation of money, but they involve either the Fed, counterfeiters, or destruction of cash money, and we will ignore those issues.)

In this problem, we will assume that you have bought all the coffee and bagels you want (and no more), so that your happiness has been maximized. Thus you are in equilibrium with the coffee shop. We will assume further that you remain in equilibrium with the coffee shop at all times, and that you can sell coffee and bagels back to the coffee shop at cost.*

Thus your savings \(S\) can be considered to be a function of your bagels \(B\) and coffee \(C\). In this problem we will also discuss the prices \(P_B\) and \(P_C\), which you may not assume are independent of \(B\) and \(C\). It may help to imagine that you could possibly buy out the local supply of coffee, and have to import it at higher costs.

  1. The prices of bagels and coffee \(P_B\) and \(P_C\) have derivative relationships between your savings and the quantity of coffee and bagels that you have. What are the units of these prices? What is the mathematical definition of \(P_C\) and \(P_B\)?

  2. Write down the total differential of your savings, in terms of \(B\), \(C\), \(P_B\) and \(P_C\).

  3. Solve for the total differential of your net worth. Your net worth \(W\) is the sum of your total savings plus the value of the coffee and bagels that you own. From the total differential, relate your amount of coffee and bagels to partial derivatives of your net worth.

group Small Group Activity

30 min.

Paramagnet (multiple solutions)
  • Students evaluate two given partial derivatives from a system of equations.
  • Students learn/review generalized Leibniz notation.
  • Students may find it helpful to use a chain rule diagram.

assignment Homework

Paramagnet (multiple solutions)
Energy and Entropy 2021 (2 years) We have the following equations of state for the total magnetization \(M\), and the entropy \(S\) of a paramagnetic system: \begin{align} M&=N\mu\, \frac{e^{\frac{\mu B}{k_B T}} - e^{-\frac{\mu B}{k_B T}}} {e^{\frac{\mu B}{k_B T}} + e^{-\frac{\mu B}{k_B T}}}\\ S&=Nk_B\left\{\ln 2 + \ln \left(e^{\frac{\mu B}{k_B T}}+e^{-\frac{\mu B}{k_B T}}\right) +\frac{\mu B}{k_B T} \frac{e^{\frac{\mu B}{k_B T}} - e^{-\frac{\mu B}{k_B T}}} {e^{\frac{\mu B}{k_B T}} + e^{-\frac{\mu B}{k_B T}}} \right\} \end{align}
  1. List variables in their proper positions in the middle columns of the charts below.

  2. Solve for the magnetic susceptibility, which is defined as: \[\chi_B=\left(\frac{\partial M}{\partial B}\right)_T \]

  3. Using both the differentials (zapping with d) and chain rule diagram methods, find a chain rule for:

    \[\left(\frac{\partial M}{\partial B}\right)_S \]

  4. Evaluate your chain rule. Sense-making: Why does this come out to zero?

face Lecture

30 min.

Review of Thermal Physics
Thermal and Statistical Physics 2020

thermodynamics statistical mechanics

These are notes, essentially the equation sheet, from the final review session for Thermal and Statistical Physics.

face Lecture

120 min.

Gibbs entropy approach
Thermal and Statistical Physics 2020

Gibbs entropy information theory probability statistical mechanics

These lecture notes for the first week of Thermal and Statistical Physics include a couple of small group activities in which students work with the Gibbs formulation of the entropy.

face Lecture

120 min.

Chemical potential and Gibbs distribution
Thermal and Statistical Physics 2020

chemical potential Gibbs distribution grand canonical ensemble statistical mechanics

These notes from the fifth week of Thermal and Statistical Physics cover the grand canonical ensemble. They include several small group activities.

face Lecture

120 min.

Boltzmann probabilities and Helmholtz
Thermal and Statistical Physics 2020

ideal gas entropy canonical ensemble Boltzmann probability Helmholtz free energy statistical mechanics

These notes, from the third week of Thermal and Statistical Physics cover the canonical ensemble and Helmholtz free energy. They include a number of small group activities.

assignment Homework

One-dimensional gas
Ideal gas Entropy Tempurature Thermal and Statistical Physics 2020 Consider an ideal gas of \(N\) particles, each of mass \(M\), confined to a one-dimensional line of length \(L\). The particles have spin zero (so you can ignore spin) and do not interact with one another. Find the entropy at temperature \(T\). You may assume that the temperature is high enough that \(k_B T\) is much greater than the ground state energy of one particle.

group Small Group Activity

30 min.

Heat and Temperature of Water Vapor

Thermo Heat Capacity Partial Derivatives

In this introduction to heat capacity, students determine a derivative that indicates how much the internal energy changes as the temperature changes when volume is held constant.

assignment Homework

Potential energy of gas in gravitational field
Potential energy Heat capacity Thermal and Statistical Physics 2020 Consider a column of atoms each of mass \(M\) at temperature \(T\) in a uniform gravitational field \(g\). Find the thermal average potential energy per atom. The thermal average kinetic energy is independent of height. Find the total heat capacity per atom. The total heat capacity is the sum of contributions from the kinetic energy and from the potential energy. Take the zero of the gravitational energy at the bottom \(h=0\) of the column. Integrate from \(h=0\) to \(h=\infty\). You may assume the gas is ideal.

assignment Homework

Quantum harmonic oscillator
Entropy Quantum harmonic oscillator Frequency Energy Thermal and Statistical Physics 2020
  1. Find the entropy of a set of \(N\) oscillators of frequency \(\omega\) as a function of the total quantum number \(n\). Use the multiplicity function: \begin{equation} g(N,n) = \frac{(N+n-1)!}{n!(N-1)!} \end{equation} and assume that \(N\gg 1\). This means you can make the Sitrling approximation that \(\log N! \approx N\log N - N\). It also means that \(N-1 \approx N\).

  2. Let \(U\) denote the total energy \(n\hbar\omega\) of the oscillators. Express the entropy as \(S(U,N)\). Show that the total energy at temperature \(T\) is \begin{equation} U = \frac{N\hbar\omega}{e^{\frac{\hbar\omega}{kT}}-1} \end{equation} This is the Planck result found the hard way. We will get to the easy way soon, and you will never again need to work with a multiplicity function like this.

assignment Homework

Free energy of a harmonic oscillator
Helmholtz free energy harmonic oscillator Thermal and Statistical Physics 2020

A one-dimensional harmonic oscillator has an infinite series of equally spaced energy states, with \(\varepsilon_n = n\hbar\omega\), where \(n\) is an integer \(\ge 0\), and \(\omega\) is the classical frequency of the oscillator. We have chosen the zero of energy at the state \(n=0\) which we can get away with here, but is not actually the zero of energy! To find the true energy we would have to add a \(\frac12\hbar\omega\) for each oscillator.

  1. Show that for a harmonic oscillator the free energy is \begin{equation} F = k_BT\log\left(1 - e^{-\frac{\hbar\omega}{k_BT}}\right) \end{equation} Note that at high temperatures such that \(k_BT\gg\hbar\omega\) we may expand the argument of the logarithm to obtain \(F\approx k_BT\log\left(\frac{\hbar\omega}{kT}\right)\).

  2. From the free energy above, show that the entropy is \begin{equation} \frac{S}{k_B} = \frac{\frac{\hbar\omega}{kT}}{e^{\frac{\hbar\omega}{kT}}-1} - \log\left(1-e^{-\frac{\hbar\omega}{kT}}\right) \end{equation}

    Entropy of a simple harmonic oscillator
    Heat capacity of a simple harmonic oscillator
    This entropy is shown in the nearby figure, as well as the heat capacity.

assignment Homework

Linear Quadrupole (w/ series)

Power Series Sequence (E&M)

Static Fields 2022 (5 years)

Consider a collection of three charges arranged in a line along the \(z\)-axis: charges \(+Q\) at \(z=\pm D\) and charge \(-2Q\) at \(z=0\).

  1. Find the electrostatic potential at a point \(\vec{r}\) in the \(xy\)-plane at a distance \(s\) from the center of the quadrupole. The formula for the electrostatic potential \(V\) at a point \(\vec{r}\) due to a charge \(Q\) at the point \(\vec{r'}\) is given by: \[ V(\vec{r})=\frac{1}{4\pi\epsilon_0} \frac{Q}{\vert \vec{r}-\vec{r'}\vert} \] Electrostatic potentials satisfy the superposition principle.
  2. Assume \(s\gg D\). Find the first two non-zero terms of a power series expansion to the electrostatic potential you found in the first part of this problem.

assignment Homework

Magnetic susceptibility
Paramagnet Magnetic susceptibility Thermal and Statistical Physics 2020

Consider a paramagnet, which is a material with \(n\) spins per unit volume each of which may each be either “up” or “down”. The spins have energy \(\pm mB\) where \(m\) is the magnetic dipole moment of a single spin, and there is no interaction between spins. The magnetization \(M\) is defined as the total magnetic moment divided by the total volume. Hint: each individual spin may be treated as a two-state system, which you have already worked with above.

Plot of magnetization vs. B field

  1. Find the Helmholtz free energy of a paramagnetic system (assume \(N\) total spins) and show that \(\frac{F}{NkT}\) is a function of only the ratio \(x\equiv \frac{mB}{kT}\).

  2. Use the canonical ensemble (i.e. partition function and probabilities) to find an exact expression for the total magentization \(M\) (which is the total dipole moment per unit volume) and the susceptibility \begin{align} \chi\equiv\left(\frac{\partial M}{\partial B}\right)_T \end{align} as a function of temperature and magnetic field for the model system of magnetic moments in a magnetic field. The result for the magnetization is \begin{align} M=nm\tanh\left(\frac{mB}{kT}\right) \end{align} where \(n\) is the number of spins per unit volume. The figure shows what this magnetization looks like.

  3. Show that the susceptibility is \(\chi=\frac{nm^2}{kT}\) in the limit \(mB\ll kT\).

assignment Homework

Building the PDM: Instructions
PDM Energy and Entropy 2021 (2 years) In your kits for the Portable Partial Derivative Machine should be the following:
  • A 1ft by 1ft board with 5 holes and measuring tapes (the measuring tapes will be on the top side)
  • 2 S-hooks
  • A spring with 3 strings attached
  • 2 small cloth bags
  • 4 large ball bearings
  • 8 small ball bearings
  • 2 vertical clamp pulleys
  • A ziploc bag containing
    • 5 screws
    • 5 hex nuts
    • 5 washers
    • 5 wing nuts
    • 2 horizontal pulleys
To assemble the Portable PDM, start by placing the PDM on a table surface with the measuring tapes perpendicular to the table's edge and the board edge with 3 holes closest to you.
  1. one screw should be put through each hole so that the threads stick out through the top side of the board. Next use a hex nut to secure each screw in place. It is not critical that they be screwed on any more than you can comfortably manage by hand.
  2. After securing all 5 screws in place with a hex nut, put a washer on each screw.
  3. Slide a horizontal pulley onto screws 1 and 2 (as labeled above).
  4. On all 5 screws, add a wing nut to secure the other pieces. Again, it does not need to be tightened all the way as long as it is secure enough that nothing will fall off.
  5. Using the middle wingnut/washer/screw (Screw 4), clamp the shortest of the strings tied to the spring.
  6. Loop the remaining 2 looped-ends of string around the horizontal pulleys and along the measuring tape.
  7. Using the string as a guide, clamp the vertical pulleys into place on the edge of the board.
  8. Through the looped-end of each string, place 1 S-hook.
  9. Put the other end of each s-hook through the hole in the small cloth bag.
Here is a poor photo of the final result, which doesn't show the two vertical pulleys. If you would like, you could view a video of the building process.

assignment Homework

Free energy of a two state system
Helmholtz free energy entropy statistical mechanics Thermal and Statistical Physics 2020
  1. Find an expression for the free energy as a function of \(T\) of a system with two states, one at energy 0 and one at energy \(\varepsilon\).

  2. From the free energy, find expressions for the internal energy \(U\) and entropy \(S\) of the system.

  3. Plot the entropy versus \(T\). Explain its asymptotic behavior as the temperature becomes high.

  4. Plot the \(S(T)\) versus \(U(T)\). Explain the maximum value of the energy \(U\).