assignment Homework

Entropy, energy, and enthalpy of van der Waals gas
Van der Waals gas Enthalpy Entropy Thermal and Statistical Physics 2020

In this entire problem, keep results to first order in the van der Waals correction terms \(a\) and $b.

  1. Show that the entropy of the van der Waals gas is \begin{align} S &= Nk\left\{\ln\left(\frac{n_Q(V-Nb)}{N}\right)+\frac52\right\} \end{align}

  2. Show that the energy is \begin{align} U &= \frac32 NkT - \frac{N^2a}{V} \end{align}

  3. Show that the enthalpy \(H\equiv U+pV\) is \begin{align} H(T,V) &= \frac52NkT + \frac{N^2bkT}{V} - 2\frac{N^2a}{V} \\ H(T,p) &= \frac52NkT + Nbp - \frac{2Nap}{kT} \end{align}

Effects of High Altitude by Randall Munroe, at xkcd.

face Lecture

30 min.

Energy and heat and entropy
Energy and Entropy 2021 (2 years)

latent heat heat capacity internal energy entropy

This short lecture introduces the ideas required for Ice Calorimetry Lab or Microwave oven Ice Calorimetry Lab.

assignment Homework

Entropy of mixing
Entropy Equilibrium Sackur-Tetrode Thermal and Statistical Physics 2020

Suppose that a system of \(N\) atoms of type \(A\) is placed in diffusive contact with a system of \(N\) atoms of type \(B\) at the same temperature and volume.

  1. Show that after diffusive equilibrium is reached the total entropy is increased by \(2Nk\ln 2\). The entropy increase \(2Nk\ln 2\) is known as the entropy of mixing.

  2. If the atoms are identical (\(A=B\)), show that there is no increase in entropy when diffusive contact is established. The difference has been called the Gibbs paradox.

  3. Since the Helmholtz free energy is lower for the mixed \(AB\) than for the separated \(A\) and \(B\), it should be possible to extract work from the mixing process. Construct a process that could extract work as the two gasses are mixed at fixed temperature. You will probably need to use walls that are permeable to one gas but not the other.

Note

This course has not yet covered work, but it was covered in Energy and Entropy, so you may need to stretch your memory to finish part (c).

assignment Homework

Ice calorimetry lab questions
This question is about the lab we did in class: Ice Calorimetry Lab.
  1. Plot your data I Plot the temperature versus total energy added to the system (which you can call \(Q\)). To do this, you will need to integrate the power. Discuss this curve and any interesting features you notice on it.
  2. Plot your data II Plot the heat capacity versus temperature. This will be a bit trickier. You can find the heat capacity from the previous plot by looking at the slope. \begin{align} C_p &= \left(\frac{\partial Q}{\partial T}\right)_p \end{align} This is what is called the heat capacity, which is the amount of energy needed to change the temperature by a given amount. The \(p\) subscript means that your measurement was made at constant pressure. This heat capacity is actually the total heat capacity of everything you put in the calorimeter, which includes the resistor and thermometer.
  3. Specific heat From your plot of \(C_p(T)\), work out the heat capacity per unit mass of water. You may assume the effect of the resistor and thermometer are negligible. How does your answer compare with the prediction of the Dulong-Petit law?
  4. Latent heat of fusion What did the temperature do while the ice was melting? How much energy was required to melt the ice in your calorimeter? How much energy was required per unit mass? per molecule?
  5. Entropy of fusion The change in entropy is easy to measure for a reversible isothermal process (such as the slow melting of ice), it is just \begin{align} \Delta S &= \frac{Q}{T} \end{align} where \(Q\) is the energy thermally added to the system and \(T\) is the temperature in Kelvin. What is was change in the entropy of the ice you melted? What was the change in entropy per molecule? What was the change in entropy per molecule divided by Boltzmann's constant?
  6. Entropy for a temperature change Choose two temperatures that your water reached (after the ice melted), and find the change in the entropy of your water. This change is given by \begin{align} \Delta S &= \int \frac{{\mathit{\unicode{273}}} Q}{T} \\ &= \int_{t_i}^{t_f} \frac{P(t)}{T(t)}dt \end{align} where \(P(t)\) is the heater power as a function of time and \(T(t)\) is the temperature, also as a function of time.

group Small Group Activity

30 min.

Changes in Internal Energy (Remote)

Thermo Internal Energy 1st Law of Thermodynamics

Warm-Up

Students consider the change in internal energy during three different processes involving a container of water vapor on a stove. Using the 1st Law of Thermodynamics, students reason about how the internal energy would change and then compare this prediction with data from NIST presented as a contour plot.

face Lecture

120 min.

Phase transformations
Thermal and Statistical Physics 2020

phase transformation Clausius-Clapeyron mean field theory thermodynamics

These lecture notes from the ninth week of Thermal and Statistical Physics cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.

group Small Group Activity

30 min.

A glass of water
Energy and Entropy 2021 (2 years)

thermodynamics intensive extensive temperature volume energy entropy

Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.

group Small Group Activity

30 min.

Optical depth of atmosphere
Contemporary Challenges 2021 (4 years) In this activity students estimate the optical depth of the atmosphere at the infrared wavelength where carbon dioxide has peak absorption.

assignment Homework

Calculation of \(\frac{dT}{dp}\) for water
Clausius-Clapeyron Thermal and Statistical Physics 2020 Calculate based on the Clausius-Clapeyron equation the value of \(\frac{dT}{dp}\) near \(p=1\text{atm}\) for the liquid-vapor equilibrium of water. The heat of vaporization at \(100^\circ\text{C}\) is \(2260\text{ J g}^{-1}\). Express the result in kelvin/atm.

group Small Group Activity

30 min.

“Squishability” of Water Vapor (Contour Map)

Thermo Partial Derivatives

Students determine the “squishibility” (an extensive compressibility) by taking \(-\partial V/\partial P\) holding either temperature or entropy fixed.

face Lecture

120 min.

Boltzmann probabilities and Helmholtz
Thermal and Statistical Physics 2020

ideal gas entropy canonical ensemble Boltzmann probability Helmholtz free energy statistical mechanics

These notes, from the third week of Thermal and Statistical Physics cover the canonical ensemble and Helmholtz free energy. They include a number of small group activities.

group Small Group Activity

30 min.

Heat capacity of N2
Contemporary Challenges 2021 (4 years)

equipartition quantum energy levels

Students sketch the temperature-dependent heat capacity of molecular nitrogen. They apply the equipartition theorem and compute the temperatures at which degrees of freedom “freeze out.”