face Lecture

10 min.

Introduction to Central Forces
Central Forces 2023

face Lecture

30 min.

Compare & Contrast Kets & Wavefunctions

Bra-Ket Notations Wavefunction Notation Completeness Relations Probability Probability Density

Completeness Relations

In this lecture, the instructor guides a discussion about translating between bra-ket notation and wavefunction notation for quantum systems.

assignment Homework

Unknowns Spin-1/2 Brief
Quantum Fundamentals 2023 (3 years) With the Spins simulation set for a spin 1/2 system, measure the probabilities of all the possible spin components for each of the unknown initial states \(\left|{\psi_3}\right\rangle \) and \(\left|{\psi_4}\right\rangle \).
  1. Use your measured probabilities to find each of the unknown states as a linear superposition of the \(S_z\)-basis states \(\left|{+}\right\rangle \) and \(\left|{-}\right\rangle \).
  2. Articulate a Process: Write a set of general instructions that would allow another student in next year's class to find an unknown state from measured probabilities.
  3. Compare Theory with Experiment: Design an experiment that will allow you to test whether your prediction for each of the unknown states is correct. Describe your experiment here, clearly but succinctly, as if you were writing it up for a paper. Do the experiment and discuss your results.
  4. Make a Conceptual Connection: In general, can you determine a quantum state with spin-component probability measurements in only two spin-component-directions? Why or why not?

assignment Homework

Fourier Transform of Cosine and Sine
Periodic Systems 2022
  1. Find the Fourier transforms of \(f(x)=\cos kx\) and \(g(x)=\sin kx\).
  2. Find the Fourier transform of \(g(x)\) using the formula for the Fourier transform of a derivative and your result for the Fourier transform of \(f(x)\). Compare with your previous answer.
  3. In quantum mechanics, the Fourier transform is the set of coefficients in the expansion of a quantum state in terms of plane waves, i.e. the function \(\tilde{f}(k)\) is a continuous histogram of how much each functions \(e^{ikx}\) contributes to the quantum state. What does the Fourier transform of the function \(\cos kx\) tell you about which plane waves make up this quantum state? Write a sentence or two about how this makes sense.

group Small Group Activity

30 min.

Time Dependence for a Quantum Particle on a Ring Part 1
Theoretical Mechanics (6 years)

central forces quantum mechanics eigenstates eigenvalues angular momentum time dependence hermitian operators probability degeneracy quantum measurements

Quantum Ring Sequence

Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.

assignment Homework

Phase
Complex Numbers Rectangular Form Exponential Form Square of the Norm Overall Phase Quantum Fundamentals 2023 (3 years)
  1. For each of the following complex numbers \(z\), find \(z^2\), \(\vert z\vert^2\), and rewrite \(z\) in exponential form, i.e. as a magnitude times a complex exponential phase:
    • \(z_1=i\),

    • \(z_2=2+2i\),
    • \(z_3=3-4i\).
  2. In quantum mechanics, it turns out that the overall phase for a state does not have any physical significance. Therefore, you will need to become quick at rearranging the phase of various states. For each of the vectors listed below, rewrite the vector as an overall complex phase times a new vector whose first component is real and positive. \[\left|D\right\rangle\doteq \begin{pmatrix} 7e^{i\frac{\pi}{6}}\\ 3e^{i\frac{\pi}{2}}\\ -1\\ \end{pmatrix}\\ \left|E\right\rangle\doteq \begin{pmatrix} i\\ 4\\ \end{pmatrix}\\ \left|F\right\rangle\doteq \begin{pmatrix} 2+2i\\ 3-4i\\ \end{pmatrix} \]

assignment Homework

Ring Table
Central Forces 2023 (3 years)

Attached, you will find a table showing different representations of physical quantities associated with a quantum particle confined to a ring. Fill in all of the missing entries. Hint: You may look ahead. We filled out a number of the entries throughout the table to give you hints about what the forms of the other entries might be. pdf link for the Table or doc link for the Table

assignment Homework

Visualization of Wave Functions on a Ring
Central Forces 2023 (3 years) Using either this Geogebra applet or this Mathematica notebook, explore the wave functions on a ring. (Note: The Geogebra applet may be a little easier to use and understand and is accessible if you don't have access to Mathematica, but it is more limited in the wave functions that you can represent. Also, the animation is pretty jumpy in some browsers, especially Firefox. Imagine that the motion is smooth.)
  1. Look at graphs of the following states \begin{align} \Phi_1(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle +\left|{-2}\right\rangle )\\ \Phi_2(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle -\left|{-2}\right\rangle )\\ \Phi_3(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle +i\left|{-2}\right\rangle ) \end{align} Write a short description of how these states differ from each other.
  2. Find a state for which the probability density does not depend on time. Write the state in both ket and wave function notation. These are called stationary states. Generalize your result to give a characterization of the set of all possible states that are stationary states.
  3. Find a state that is right-moving. Write the state in both ket and wave function notation. Generalize your result to give a characterization of the set of all possible states that are right-moving.
  4. Find a state that is a standing wave. Write the state in both ket and wave function notation. Generalize your result to give a characterization of the set of all possible states that are standing waves.

group Small Group Activity

120 min.

Representations of the Infinite Square Well
Quantum Fundamentals 2023 (3 years)

Warm-Up

assignment Homework

Distribution function for double occupancy statistics
Orbitals Distribution function Thermal and Statistical Physics 2020

Let us imagine a new mechanics in which the allowed occupancies of an orbital are 0, 1, and 2. The values of the energy associated with these occupancies are assumed to be \(0\), \(\varepsilon\), and \(2\varepsilon\), respectively.

  1. Derive an expression for the ensemble average occupancy \(\langle N\rangle\), when the system composed of this orbital is in thermal and diffusive contact with a resevoir at temperature \(T\) and chemical potential \(\mu\).

  2. Return now to the usual quantum mechanics, and derive an expression for the ensemble average occupancy of an energy level which is doubly degenerate; that is, two orbitals have the identical energy \(\varepsilon\). If both orbitals are occupied the toal energy is \(2\varepsilon\). How does this differ from part (a)?

computer Mathematica Activity

30 min.

Visualizing Combinations of Spherical Harmonics
Central Forces 2023 (3 years) Students observe three different plots of linear combinations of spherical combinations with probability density represented by color on the sphere, distance from the origin (polar plot), and distance from the surface of the sphere.

group Small Group Activity

30 min.

Quantum Expectation Values
Quantum Fundamentals 2023 (3 years)

group Small Group Activity

60 min.

Expectation Value and Uncertainty for the Difference of Dice
Quantum Fundamentals 2023 (3 years)

face Lecture

30 min.

Time Evolution Refresher (Mini-Lecture)
Central Forces 2023 (3 years)

schrodinger equation time dependence stationary states

Quantum Ring Sequence

The instructor gives a brief lecture about time dependence of energy eigenstates (e.g. McIntyre, 3.1). Notes for the students are attached.

group Small Group Activity

30 min.

Working with Representations on the Ring
Central Forces 2023 (3 years)

computer Mathematica Activity

30 min.

Visualization of Quantum Probabilities for a Particle Confined to a Ring
Central Forces 2023 (3 years)

central forces quantum mechanics angular momentum probability density eigenstates time evolution superposition mathematica

Quantum Ring Sequence

Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.

group Small Group Activity

30 min.

Wavefunctions on a Quantum Ring
Central Forces 2023 (2 years)

assignment Homework

Completeness Relation Change of Basis
change of basis spin half completeness relation dirac notation

Completeness Relations

Quantum Fundamentals 2023 (3 years)
  1. Given the polar basis kets written as a superposition of Cartesian kets \begin{eqnarray*} \left|{\hat{s}}\right\rangle &=& \cos\phi \left|{\hat{x}}\right\rangle + \sin\phi \left|{\hat{y}}\right\rangle \\ \left|{\hat{\phi}}\right\rangle &=& -\sin\phi \left|{\hat{x}}\right\rangle + \cos\phi \left|{\hat{y}}\right\rangle \end{eqnarray*}

    Find the following quantities: \[\left\langle {\hat{x}}\middle|{\hat{s}}\right\rangle ,\quad \left\langle {\hat{y}}\middle|{{\hat{s}}}\right\rangle ,\quad \left\langle {\hat{x}}\middle|{\hat{\phi}}\right\rangle ,\quad \left\langle {\hat{y}}\middle|{\hat{\phi}}\right\rangle \]

  2. Given a vector written in the polar basis \[\left|{\vec{v}}\right\rangle = a\left|{\hat{s}}\right\rangle + b\left|{\hat{\phi}}\right\rangle \] where \(a\) and \(b\) are known. Find coefficients \(c\) and \(d\) such that \[\left|{\vec{v}}\right\rangle = c\left|{\hat{x}}\right\rangle + d\left|{\hat{y}}\right\rangle \] Do this by using the completeness relation: \[\left|{\hat{x}}\right\rangle \left\langle {\hat{x}}\right| + \left|{\hat{y}}\right\rangle \left\langle {\hat{y}}\right| = 1\]
  3. Using a completeness relation, change the basis of the spin-1/2 state \[\left|{\Psi}\right\rangle = g\left|{+}\right\rangle + h\left|{-}\right\rangle \] into the \(S_y\) basis. In otherwords, find \(j\) and \(k\) such that \[\left|{\Psi}\right\rangle = j\left|{+}\right\rangle _y + k\left|{-}\right\rangle _y\]

assignment Homework

Fourier Series for the Ground State of a Particle-in-a-Box.
Oscillations and Waves 2023 (2 years) Treat the ground state of a quantum particle-in-a-box as a periodic function.
  • Set up the integrals for the Fourier series for this state.

  • Which terms will have the largest coefficients? Explain briefly.

  • Are there any coefficients that you know will be zero? Explain briefly.

  • Using the technology of your choice or by hand, calculate the four largest coefficients. With screen shots or otherwise, show your work.

  • Using the technology of your choice, plot the ground state and your approximation on the same axes.

keyboard Computational Activity

120 min.

Sinusoidal basis set
Computational Physics Lab II 2023 (2 years)

inner product wave function quantum mechanics particle in a box

Students compute inner products to expand a wave function in a sinusoidal basis set. This activity introduces the inner product for wave functions, and the idea of approximating a wave function using a finite set of basis functions.