Activities
Find the rectangular coordinates of the point where the angle \(\frac{5\pi}{3}\) meets the unit circle. If this were a point in the complex plane, what would be the rectangular and exponential forms of the complex number? (See figure.)
Students move their left arm in a circle to trace out the complex plane (Argand diagram). They then explore the rectangular and exponential representations of complex numbers by using their left arm to show given complex numbers on the complex plane. Finally they enact multiplication of complex numbers in exponential form and complex conjugation.
In quantum mechanics, it turns out that the overall phase for a state does not have any physical significance. Therefore, you will need to become quick at rearranging the phase of various states. For each of the vectors listed below, rewrite the vector as an overall complex phase times a new vector whose first component is real and positive. \[\left|D\right\rangle\doteq \begin{pmatrix} 7e^{i\frac{\pi}{6}}\\ 3e^{i\frac{\pi}{2}}\\ -1\\ \end{pmatrix}\\ \left|E\right\rangle\doteq \begin{pmatrix} i\\ 4\\ \end{pmatrix}\\ \left|F\right\rangle\doteq \begin{pmatrix} 2+2i\\ 3-4i\\ \end{pmatrix} \]
In this introductory lecture/SWBQ, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in rectangular coordinates for coordinate equals constant paths.
This activity can be done as a mini-lecture/SWBQ as an introduction to Vector Differential--Curvilinear where students find the vector differential in cylindrical and spherical coordinates..
Sketch each of the vector fields below.
- \(\boldsymbol{\vec F} =-y\,\boldsymbol{\hat x} + x\,\boldsymbol{\hat y}\)
- \(\boldsymbol{\vec G} = x\,\boldsymbol{\hat x} + y\,\boldsymbol{\hat y}\)
- \(\boldsymbol{\vec H} = y\,\boldsymbol{\hat x} + x\,\boldsymbol{\hat y}\)
Problem
For an infinitesimally thin cylindrical shell of radius \(b\) with uniform surface charge density \(\sigma\), the electric field is zero for \(s<b\) and \(\vec{E}= \frac{\sigma b}{\epsilon_0 s}\, \hat s\) for \(s > b\). Use the differential form of Gauss' Law to find the charge density everywhere in space.
This small group activity using surfaces relates the geometric definition of directional derivatives to the components of the gradient vector. Students work in small groups to measure a directional derivative directly, then compare its components with measured partial derivatives in rectangular coordinates. The whole class wrap-up discussion emphasizes the relationship between the geometric gradient vector and directional derivatives.
Students construct two different rectangular coordinate systems and corresponding vector bases, then compare computations done with each.
This small group activity is designed to provide practice with the chain rule and to develop familiarity with polar coordinates. Students work in small groups to relate partial derivatives in rectangular and polar coordinates. The whole class wrap-up discussion emphasizes the importance of specifying what quantities are being held constant.
This small group activity using surfaces combines practice with the multivariable chain rule while emphasizing numerical representations of derivatives. Students work in small groups to measure partial derivatives in both rectangular and polar coordinates, then verify their results using the chain rule. The whole class wrap-up discussion emphasizes the relationship between a directional derivative in the \(r\)-direction and derivatives in \(x\)- and \(y\)-directions using the chain rule.
This activity acts as a reintroduction to doing quantum calculations while also introducing the matrix representation on the ring, allowing students to discover how to index and form a column vector representing the given quantum state. In addition, this activity introduces degenerate measurements on the quantum ring and examines the state after measuring both degenerate and non-degenerate eigenvalues for the state.
This lecture is one step in motivating the form of the Planck distribution.
Students calculate two different (thermodynamic) partial derivatives of the form \(\left(\frac{\partial A}{\partial B}\right)_C\) from information given on the same contour map.
This activity lets students explore translating a wavefunction that isn't obviously made up of eigenstates at first glance into ket and matrix form. Then students explore wave functions, probabilities in a region, expectation values, and what wavefunctions can tell you about measurements of \(L_z\).