title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

    1. Which pairs of events (if any) are simultaneous in the unprimed frame?

    2. Which pairs of events (if any) are simultaneous in the primed frame?

    3. Which pairs of events (if any) are colocated in the unprimed frame?

    4. Which pairs of events (if any) are colocated in the primed frame?

  1. For each of the figures, answer the following questions:
    1. Which event occurs first in the unprimed frame?

    2. Which event occurs first in the primed frame?

Small Group Activity

5 min.

Events on Spacetime Diagrams
Students practice identifying whether events on spacetime diagrams are simultaneous, colocated, or neither for different observers. Then students decide which of two events occurs first in two different reference frames.
Students move their left arm in a circle to trace out the complex plane (Argand diagram). They then explore the rectangular and exponential representations of complex numbers by using their left arm to show given complex numbers on the complex plane. Finally they enact multiplication of complex numbers in exponential form and complex conjugation.
A short lecture introducing the idea that most of the energy loss when driving is going into the kinetic energy of the air.

Small White Board Question

10 min.

Possible Worldlines
Student consider several curves on a spacetime diagram and have to judge which curves could be worldlines for an object.

Small Group Activity

30 min.

Right Angles on Spacetime Diagrams
Students take the inner product of vectors that lie on the spacetime axis to show that they are orthogonal. To do the inner product, students much use the Minkowski metric.
In this lecture, students see a geometric derivation of the Lorentz Transformation on a spacetime diagram.

Small Group Activity

30 min.

Paramagnet (multiple solutions)
  • Students evaluate two given partial derivatives from a system of equations.
  • Students learn/review generalized Leibniz notation.
  • Students may find it helpful to use a chain rule diagram.