Activities
Students observe three different plots of linear combinations of spherical combinations with probability density represented by color on the sphere, distance from the origin (polar plot), and distance from the surface of the sphere.
\(\boxed{\begin{array}{lll} \ell& m & \quad\quad\quad\; Y_\ell^m(\theta,\phi) \\[.35cm] \hline \\[.03cm] 0 & 0 & \quad\;\; Y_0^0=\sqrt{\frac{1}{4\pi}} \\[.35cm] 1 & 0 & \quad\;\; Y_1^0=\sqrt{\frac{3}{4\pi}}\cos\theta \\[.35cm] & \pm1 & \quad Y_1^{\pm1}=\mp\sqrt{\frac{3}{8\pi}}\sin\theta e^{\pm i\phi} \\[.35cm] 2 & 0 & \quad\;\;Y_2^0=\sqrt{\frac{5}{16\pi}}\left(3\cos^2\theta-1 \right) \\[.35cm] & \pm1 & \quad Y_2^{\pm1}=\mp\sqrt{\frac{15}{8\pi}}\sin\theta\cos \theta e^{\pm i\phi} \\[.35cm] & \pm2 & \quad Y_2^{\pm2}=\sqrt{\frac{15}{32\pi}}\sin^2\theta e^{\pm2i\phi} \\[.35cm] 3 & 0 & \quad\;\;Y_3^0=\sqrt{\frac{7}{16\pi}}\left(5\cos^3\theta-3 \cos\theta\right) \\[.35cm] & \pm1 & \quad Y_3^{\pm1}=\mp\sqrt{\frac{21}{64\pi}}\sin\theta \left(5\cos^2\theta-1\right)e^{\pm i\phi} \\[.35cm] & \pm2 & \quad Y_3^{\pm2}=\sqrt{\frac{105}{32\pi}} \sin^2\theta\cos\theta e^{\pm2i\phi} \\[.35cm] & \pm3 & \quad Y_3^{\pm3}=\sqrt{\frac{35}{64\pi}}\sin^3\theta e^{\pm3i\phi} \\[.001cm] \end{array}}\)
Students solve numerically for the potential due to a spherical shell of charge. Although this potential is straightforward to compute using Gauss's Law, it serves as a nice example for numerically integrating in spherical coordinates because the correct answer is easy to recognize.
First, students are shown diagrams of cylindrical and spherical coordinates. Common notation systems are discussed, especially that physicists and mathematicians use opposite conventions for the angles \(\theta\) and \(\phi\). Then students are asked to check their understanding by sketching several coordinate equals constant surfaces on their small whiteboards.
Students learn how to express Angular Momentum as a vector quantity in polar coordinates, and then in Cylindrical and Spherical Coordinates
Problem
Show that the plane polar coordinates are equivalent to spherical coordinates if we make the choices:
- The direction of \(\theta=0\) in spherical coordinates is the same as the direction of out of the plane in plane polar coordinates.
- Given the correspondance above, then if we choose the \(\theta\) of spherical coordinates is to be \(\pi/2\), we restrict to the equatorial plane of spherical coordinates.
One way to write volume charge densities without using piecewise functions is to use step \((\Theta)\) or \(\delta\) functions. Consider a spherical shell with charge density \[\rho (\vec{r})=\alpha3e^{(k r)^3} \]
between the inner radius \(a\) and the outer radius \(b\). The charge density is zero everywhere else.
- (2 pts) What are the dimensions of the constants \(\alpha\) and \(k\)?
- (2 pts) By hand, sketch a graph the charge density as a function of \(r\) for \(\alpha > 0\) and \(k>0\) .
- (2 pts) Use step functions to write this charge density as a single function valid everywhere in space.
Students use their arms to depict (sequentially) the different cylindrical and spherical basis vectors at the location of their shoulder (seen in relation to a specified origin of coordinates: either a set of axes hung from the ceiling of the room or perhaps a piece of furniture or a particular corner of the room).
In this small group activity, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in different coordinate systems (cartesian, cylindrical, spherical).
Use Vector Differential--Rectangular as an introduction. This activity can be done simultaneously with Pineapples and Pumpkins where students or the instructor cut volume elements out of pineapples and/or pumpkins to show the geometry.
In this small group activity, students integrate over non-uniform charge densities in cylindrical and spherical coordinates to calculate total charge.
Students use known algebraic expressions for vector line elements \(d\boldsymbol{\vec{r}}\) to determine all simple vector area \(d\boldsymbol{\vec{A}}\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.
This activity is identical to Scalar Surface and Volume Elements except uses a vector approach to find directed surface and volume elements.
Students use known algebraic expressions for length elements \(d\ell\) to determine all simple scalar area \(dA\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.
This activity is identical to Vector Surface and Volume Elements except uses a scalar approach to find surface, and volume elements.
There are two versions of this activity:
As a whole class activity, the instructor cuts a pumpkin in order to produce a small volume element \(d\tau\), interspersing their work with a sequence of small whiteboard questions. This version of the activity is described here.
As a small group activity, students are given pineapple rounds and pumpkin wedges to explore area and volume elements in cylindrical and spherical coordinate systems. In this version of the activity, the fruit is distributed to the students with appropriate children's pumpkin cutting equipment, as part of activities Vector Differential--Curvilinear, Scalar Surface and Volume Elements, or Vector Surface and Volume Elements.
Students integrate numerically to find the electric field due to a cone of surface charge, and then visualize the result. This integral can be done in either spherical or cylindrical coordinates, giving students a chance to reason about which coordinate system would be more convenient.
In this introductory lecture/SWBQ, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in rectangular coordinates for coordinate equals constant paths.
This activity can be done as a mini-lecture/SWBQ as an introduction to Vector Differential--Curvilinear where students find the vector differential in cylindrical and spherical coordinates..
Students construct the volume element in cylindrical and spherical coordinates.