assignment Homework

Circle Trig Complex
Complex Numbers Exponential Form Rectangular Form Polar Form Unit Circle Quantum Fundamentals 2023 (2 years)

Find the rectangular coordinates of the point where the angle \(\frac{5\pi}{3}\) meets the unit circle. If this were a point in the complex plane, what would be the rectangular and exponential forms of the complex number? (See figure.)

assignment Homework

Circle Trigonometry
trigonometry cosine sine math circle Quantum Fundamentals 2023 (3 years)

On the following diagrams, mark both \(\theta\) and \(\sin\theta\) for \(\theta_1=\frac{5\pi}{6}\) and \(\theta_2=\frac{7\pi}{6}\). Write one to three sentences about how these two representations are related to each other. (For example, see: this PHET)

assignment Homework

Graphs Involving the Distance Formula
Static Fields 2023 (6 years)

Learn more about the geometry of \(\vert \vec{r}-\vec{r'}\vert\) in two dimensions.

  1. Make sketches of the following functions, by hand, on the same axes: \begin{align} y &= \sin x\\ y &= \sin(2+x) \end{align} Briefly describe the role that the number 2 plays in the shape of the second graph
  2. Make a sketch of the graph \begin{equation} \vert \vec{r} - \vec{a} \vert = 2 \end{equation}

    for each of the following values of \(\vec a\): \begin{align} \vec a &= \vec 0\\ \vec a &= 2 \hat x- 3 \hat y\\ \vec a &= \text{points due east and is 2 units long} \end{align}

  3. Derive a more familiar equation equivalent to \begin{equation} \vert \vec r - \vec a \vert = 2 \end{equation} for arbitrary \(\vec a\), by expanding \(\vec r\) and \(\vec a\) in rectangular coordinates. Simplify as much as possible. (Ok, ok, I know this is a terribly worded question. What do I mean by “more familiar"? What do I mean by “simplify as much as possible"? Why am I making you read my mind? Try it anyway. Real life is not full of carefully worded problems. Bonus points to anyone who can figure out a better way of wording the question that doesn't give the point away.)
  4. Write a brief description of the geometric meaning of the equation \begin{equation} \vert \vec r - \vec a \vert = 2 \end{equation}

accessibility_new Kinesthetic

10 min.

Acting Out Current Density
Static Fields 2023 (6 years)

Steady current current density magnetic field idealization

Integration Sequence

Ring Cycle Sequence

Students, pretending they are point charges, move around the room so as to make an imaginary magnetic field meter register a constant magnetic field, introducing the concept of steady current. Students act out linear \(\vec{I}\), surface \(\vec{K}\), and volume \(\vec{J}\) current densities. The instructor demonstrates what it means to measure these quantities by counting how many students pass through a gate.

accessibility_new Kinesthetic

10 min.

Using Arms to Visualize Complex Numbers (MathBits)
Lie Groups and Lie Algebras 23 (4 years)

arms complex numbers Argand diagram complex plane rectangular form exponential form complex conjugate math

Arms Sequence for Complex Numbers and Quantum States

Students move their left arm in a circle to trace out the complex plane (Argand diagram). They then explore the rectangular and exponential representations of complex numbers by using their left arm to show given complex numbers on the complex plane. Finally they enact multiplication of complex numbers in exponential form and complex conjugation.

assignment Homework

Cone Surface
Static Fields 2023 (6 years)

  • Find \(dA\) on the surface of an (open) cone in both cylindrical and spherical coordinates. Hint: Be smart about how you coordinatize the cone.
  • Using integration, find the surface area of an (open) cone with height \(H\) and radius \(R\). Do this problem in both cylindrical and spherical coordinates.

group Small Group Activity

30 min.

Flux through a Cone
Static Fields 2021 (4 years)

Integration Sequence

Students calculate the flux from the vector field \(\vec{F} = C\, z\, \hat{z}\) through a right cone of height \(H\) and radius \(R\) .