title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Consider a white dwarf of mass \(M\) and radius \(R\). The dwarf consists of ionized hydrogen, thus a bunch of free electrons and protons, each of which are fermions. Let the electrons be degenerate but nonrelativistic; the protons are nondegenerate.

  1. Show that the order of magnitude of the gravitational self-energy is \(-\frac{GM^2}{R}\), where \(G\) is the gravitational constant. (If the mass density is constant within the sphere of radius \(R\), the exact potential energy is \(-\frac53\frac{GM^2}{R}\)).

  2. Show that the order of magnitude of the kinetic energy of the electrons in the ground state is \begin{align} \frac{\hbar^2N^{\frac53}}{mR^2} \approx \frac{\hbar^2M^{\frac53}}{mM_H^{\frac53}R^2} \end{align} where \(m\) is the mass of an electron and \(M_H\) is the mas of a proton.

  3. Show that if the gravitational and kinetic energies are of the same order of magnitude (as required by the virial theorem of mechanics), \(M^{\frac13}R \approx 10^{20} \text{g}^{\frac13}\text{cm}\).

  4. If the mass is equal to that of the Sun (\(2\times 10^{33}g\)), what is the density of the white dwarf?

  5. It is believed that pulsars are stars composed of a cold degenerate gas of neutrons (i.e. neutron stars). Show that for a neutron star \(M^{\frac13}R \approx 10^{17}\text{g}^{\frac13}\text{cm}\). What is the value of the radius for a neutron star with a mass equal to that of the Sun? Express the result in \(\text{km}\).

Small Group Activity

60 min.

Visualizing Plane Waves

Each small group of 3-4 students is given a white board or piece of paper with a square grid of points on it.

Each group is given a different two-dimensional vector \(\vec{k}\) and is asked to calculate the value of \(\vec{k} \cdot \vec {r}\) for each point on the grid and to draw the set of points with constant value of \(\vec{k} \cdot \vec{r}\) using rainbow colors to indicate increasing value.