group Small Group Activity

60 min.

Systems of Equations Compare and Contrast

In our week on radiation, we saw that the Helmholtz free energy of a box of radiation at temperature \(T\) is \begin{align} F &= -8\pi \frac{V(kT)^4}{h^3c^3}\frac{\pi^4}{45} \end{align} From this we also found the internal energy and entropy \begin{align} U &= 24\pi \frac{(kT)^4}{h^3c^3}\frac{\pi^4}{45} V \\ S &= 32\pi kV\left(\frac{kT}{hc}\right)^3 \frac{\pi^4}{45} \end{align} Given these results, let us consider a Carnot engine that uses an empty metalic piston (i.e. a photon gas).

  1. Given \(T_H\) and \(T_C\), as well as \(V_1\) and \(V_2\) (the two volumes at \(T_H\)), determine \(V_3\) and \(V_4\) (the two volumes at \(T_C\)).

  2. What is the heat \(Q_H\) taken up and the work done by the gas during the first isothermal expansion? Are they equal to each other, as for the ideal gas?

  3. Does the work done on the two isentropic stages cancel each other, as for the ideal gas?

  4. Calculate the total work done by the gas during one cycle. Compare it with the heat taken up at \(T_H\) and show that the energy conversion efficiency is the Carnot efficiency.

  • Found in: Thermal and Statistical Physics course(s)

Consider one mole of an ideal monatomic gas at 300K and 1 atm. First, let the gas expand isothermally and reversibly to twice the initial volume; second, let this be followed by an isentropic expansion from twice to four times the original volume.

  1. How much heat (in joules) is added to the gas in each of these two processes?

  2. What is the temperature at the end of the second process?

  3. Suppose the first process is replaced by an irreversible expansion into a vacuum, to a total volume twice the initial volume. What is the increase of entropy in the irreversible expansion, in J/K?

  • Found in: Thermal and Statistical Physics course(s)
  • Found in: Central Forces course(s)

format_list_numbered Sequence

Warm-Up

Warm-Up (Welcome Activity Reviewing Material from Undergraduate Physics)

This content is used in the Physics Department at OSU with incoming graduate students to remind them of undergraduate content before classes start and to help them to decide whether or not to take some Bridge Courses. This sequence is intended to run in two blocks of three hours each. The sessions should be run by someone with a deep knowledge of all of the relevant courses, the specific activities, and active engagement in general.

This session may be the first opportunity for the incoming graduate students to meet each other as well as some faculty and other graduate students. So start with a 1/2 hour dedicated to introductons.

Consider inviting some or all of the following people to participate:

  • At least one faculty member to run the session who has broad experience with the curriculum and the activities--typically the Paradigms Director.
  • Graduate students who have TAd for courses that incorporated these exact activities, as needed to provide one experienced person to sit with each group of three graduate students. The Head Graduate Advisor has often asked these graduate students for evaluative input regarding the members of their group. CAM thinks that they should be given a heads-up about what will be expected.
  • The Head Graduate Advisor (n.b. In the past the Grad Advisor has roamed the classroom, hovering over the groups as they work. CAM thinks this can appear intimidating/judgmental. Consider asking the grad advisor to SIT with groups, even if they move frequently from group to group.
  • Members of the Core Advising Committee
  • Faculty who will be teaching the Bridge Courses so that they are available to answer student questions, especially individual questions during breaks.
  • Graduate students who have take Bridge Courses in the past who are comfortable discussing their choices and experiences.

(modified from K&K 4.6) We discussed in class that \begin{align} p &= -\left(\frac{\partial F}{\partial V}\right)_T \end{align} Use this relationship to show that

  1. \begin{align} p &= -\sum_j \langle n_j\rangle\hbar \left(\frac{d\omega_j}{dV}\right), \end{align} where \(\langle n_j\rangle\) is the number of photons in the mode \(j\);

  2. Solve for the relationship between pressure and internal energy.

  • Found in: Thermal and Statistical Physics course(s)

Task: Draw a right triangle. Put a circle around the right angle, that is, the angle that is \(\frac\pi2\) radians.

Preparing your submission:

  • Complete the assignment using your choice of technology. You may write your answers on paper, write them electronically (for instance using xournal), or typeset them (for instance using LaTeX).
  • If using software, please export to PDF. If writing by hand, please scan your work using the AIMS scanner if possible. You can also use a scanning app; Gradescope offers advice and suggested apps at this URL. The preferred format is PDF; photos or JPEG scans are less easy to read (and much larger), and should be used only if no alternative is available.)
  • Please make sure that your file name includes your own name and the number of the assignment, such as "Tevian2.pdf."

Using Gradescope: We will arrange for you to have a Gradescope account, after which you should receive access instructions directly from them. To submit an assignment:

  1. Navigate to https://paradigms.oregonstate.eduhttps://www.gradescope.com and login
  2. Select the appropriate course, such as "AIMS F21". (There will likely be only one course listed.)
  3. Select the assignment called "Sample Assignment"
  4. Follow the instructions to upload your assignment. (The preferred format is PDF.)
  5. You will then be prompted to associate submitted pages with problem numbers by selecting pages on the right and questions on the left. (In this assignment, there is only one of each.) You may associate multiple problems with the same page if appropriate.
  6. When you are finished, click "Submit"
  7. After the assignments have been marked, you can log back in to see instructor comments.

  • Found in: AIMS Maxwell, Problem-Solving course(s)

assignment_ind Small White Board Question

10 min.

Electrostatic Potential Due to a Point Charge
  • Found in: Static Fields course(s) Found in: Warm-Up, E&M Ring Cycle Sequence sequence(s)

Consider the finite line with a uniform charge density from class.

  1. Write an integral expression for the electric field at any point in space due to the finite line. In addition to your usual physics sense-making, you must include a clearly labeled figure and discuss what happens to the direction of the unit vectors as you integrate.Consider the finite line with a uniform charge density from class.
  2. Perform the integral to find the \(z\)-component of the electric field. In addition to your usual physics sense-making, you must compare your result to the gradient of the electric potential we found in class. (If you want to challenge yourself, do the \(s\)-component as well!)

group Small Group Activity

10 min.

Cross Product
This small group activity is designed to help students visualize the cross product. Students work in small groups to determine the area of a triangle in space. The whole class wrap-up discussion emphasizes the geometric interpretation of the cross product.

group Small Group Activity

30 min.

The Pretzel

Suppose that a system of \(N\) atoms of type \(A\) is placed in diffusive contact with a system of \(N\) atoms of type \(B\) at the same temperature and volume.

  1. Show that after diffusive equilibrium is reached the total entropy is increased by \(2Nk\ln 2\). The entropy increase \(2Nk\ln 2\) is known as the entropy of mixing.

  2. If the atoms are identical (\(A=B\)), show that there is no increase in entropy when diffusive contact is established. The difference has been called the Gibbs paradox.

  3. Since the Helmholtz free energy is lower for the mixed \(AB\) than for the separated \(A\) and \(B\), it should be possible to extract work from the mixing process. Construct a process that could extract work as the two gasses are mixed at fixed temperature. You will probably need to use walls that are permeable to one gas but not the other.

Note

This course has not yet covered work, but it was covered in Energy and Entropy, so you may need to stretch your memory to finish part (c).

  • Found in: Thermal and Statistical Physics course(s)
This question is about the lab we did in class: Ice Calorimetry Lab.
  1. Plot your data I Plot the temperature versus total energy added to the system (which you can call \(Q\)). To do this, you will need to integrate the power. Discuss this curve and any interesting features you notice on it.
  2. Plot your data II Plot the heat capacity versus temperature. This will be a bit trickier. You can find the heat capacity from the previous plot by looking at the slope. \begin{align} C_p &= \left(\frac{\partial Q}{\partial T}\right)_p \end{align} This is what is called the heat capacity, which is the amount of energy needed to change the temperature by a given amount. The \(p\) subscript means that your measurement was made at constant pressure. This heat capacity is actually the total heat capacity of everything you put in the calorimeter, which includes the resistor and thermometer.
  3. Specific heat From your plot of \(C_p(T)\), work out the heat capacity per unit mass of water. You may assume the effect of the resistor and thermometer are negligible. How does your answer compare with the prediction of the Dulong-Petit law?
  4. Latent heat of fusion What did the temperature do while the ice was melting? How much energy was required to melt the ice in your calorimeter? How much energy was required per unit mass? per molecule?
  5. Entropy of fusion The change in entropy is easy to measure for a reversible isothermal process (such as the slow melting of ice), it is just \begin{align} \Delta S &= \frac{Q}{T} \end{align} where \(Q\) is the energy thermally added to the system and \(T\) is the temperature in Kelvin. What is was change in the entropy of the ice you melted? What was the change in entropy per molecule? What was the change in entropy per molecule divided by Boltzmann's constant?
  6. Entropy for a temperature change Choose two temperatures that your water reached (after the ice melted), and find the change in the entropy of your water. This change is given by \begin{align} \Delta S &= \int \frac{{\mathit{\unicode{273}}} Q}{T} \\ &= \int_{t_i}^{t_f} \frac{P(t)}{T(t)}dt \end{align} where \(P(t)\) is the heater power as a function of time and \(T(t)\) is the temperature, also as a function of time.
Consider a system of fixed volume in thermal contact with a resevoir. Show that the mean square fluctuations in the energy of the system is \begin{equation} \left<\left(\varepsilon-\langle\varepsilon\rangle\right)^2\right> = k_BT^2\left(\frac{\partial U}{\partial T}\right)_{V} \end{equation} Here \(U\) is the conventional symbol for \(\langle\varepsilon\rangle\). Hint: Use the partition function \(Z\) to relate \(\left(\frac{\partial U}{\partial T}\right)_V\) to the mean square fluctuation. Also, multiply out the term \((\cdots)^2\).
  • Found in: Thermal and Statistical Physics course(s)

group Small Group Activity

30 min.

Murder Mystery Method

Consider the bottle in a bottle problem in a previous problem set, summarized here.

A small bottle of helium is placed inside a large bottle, which otherwise contains vacuum. The inner bottle contains a slow leak, so that the helium leaks into the outer bottle. The inner bottle contains one tenth the volume of the outer bottle, which is insulated.

The volume of the small bottle is 0.001 m23 and the volume of the big bottle is 0.01 m3. The initial state of the gas in the small bottle was \(p=106\) Pa and its temperature \(T=300\) K. Approximate the helium gas as an ideal gas of equations of state \(pV=Nk_BT\) and \(U=\frac32 Nk_BT\).

  1. How many molecules of gas does the large bottle contain? What is the final temperature of the gas?

  2. Compute the integral \(\int \frac{{\mathit{\unicode{273}}} Q}{T}\) and the change of entropy \(\Delta S\) between the initial state (gas in the small bottle) and the final state (gas leaked in the big bottle).

  3. Discuss your results.

  • Found in: Energy and Entropy course(s)

group Small Group Activity

30 min.

Chain Rule Measurement
This small group activity using surfaces combines practice with the multivariable chain rule while emphasizing numerical representations of derivatives. Students work in small groups to measure partial derivatives in both rectangular and polar coordinates, then verify their results using the chain rule. The whole class wrap-up discussion emphasizes the relationship between a directional derivative in the \(r\)-direction and derivatives in \(x\)- and \(y\)-directions using the chain rule.
  • Found in: Vector Calculus I course(s)

face Lecture

30 min.

Introducing entropy
This lecture introduces the idea of entropy, including the relationship between entropy and multiplicity as well as the relationship between changes in entropy and heat.

keyboard Computational Activity

120 min.

Electrostatic potential and Electric Field of a square of charge
Students write python programs to compute the potential due to a square of surface charge, and then to visualize the result. This activity can be used to introduce students to the process of integrating numerically.

group Small Group Activity

30 min.

Grey space capsule
In this small group activity, students work out the steady state temperature of an object absorbing and emitting blackbody radiation.