Search

 

Results: Zero of Potential

group Small Group Activity

60 min.

Gravitational Potential Energy

Mechanics Gravitational Potential Energy Zero of Potential Introductory Physics

Students examine a plastic “surface” graph of the gravitational potential energy of an Earth-satellite system to explore the properties of gravitational potential energy for a spherically symmetric system.

group Small Group Activity

120 min.

Equipotential Surfaces

E&M Quadrupole Scalar Fields

Students are prompted to consider the scalar superposition of the electric potential due to multiple point charges. First a single point charge is discussed, then four positive charges, then an electric quadrupole. Students draw the equipotential curves in the plane of the charges, while also considering the 3D nature of equipotentials.

assignment Homework

Linear Quadrupole (w/o series)
Consider a collection of three charges arranged in a line along the \(z\)-axis: charges \(+Q\) at \(z=\pm D\) and charge \(-2Q\) at \(z=0\).
  1. Find the electrostatic potential at a point \(P\) on the \(x\)-axis at a distance \(x\) from the center of the quadrupole.

  2. A series of charges arranged in this way is called a linear quadrupole. Why?

assignment_ind Small White Board Question

10 min.

Gravitational and Electrostatic Potential

assignment Homework

Linear Quadrupole (w/ series)

Consider a collection of three charges arranged in a line along the \(z\)-axis: charges \(+Q\) at \(z=\pm D\) and charge \(-2Q\) at \(z=0\).

  1. Find the electrostatic potential at a point \(P\) in the \(xy\)-plane at a distance \(s\) from the center of the quadrupole.
  2. Assume \(s\gg D\). Find the first two non-zero terms of a power series expansion to the electrostatic potential you found in the first part of this problem.
  3. A series of charges arranged in this way is called a linear quadrupole. Why?

group Small Group Activity

30 min.

Electric Potential of Two Charged Plates
Students examine a plastic "surface" graph of the electric potential due to two changes plates (near the center of the plates) and explore the properties of the electric potential.

assignment Homework

Yukawa

In a solid, a free electron doesn't see” a bare nuclear charge since the nucleus is surrounded by a cloud of other electrons. The nucleus will look like the Coulomb potential close-up, but be screened” from far away. A common model for such problems is described by the Yukawa or screened potential: \begin{equation} U(r)= -\frac{k}{r} e^{-\frac{r}{\alpha}} \end{equation}

  1. Graph the potential, with and without the exponential term. Describe how the Yukawa potential approximates the “real” situation. In particular, describe the role of the parameter \(\alpha\).
  2. Draw the effective potential for the two choices \(\alpha=10\) and \(\alpha=0.1\) with \(k=1\) and \(\ell=1\). For which value(s) of \(\alpha\) is there the possibility of stable circular orbits?

« Previous | Next »