assignment Homework

Ring Table
Central Forces 2023 (3 years)

Attached, you will find a table showing different representations of physical quantities associated with a quantum particle confined to a ring. Fill in all of the missing entries. Hint: You may look ahead. We filled out a number of the entries throughout the table to give you hints about what the forms of the other entries might be. pdf link for the Table or doc link for the Table

group Small Group Activity

10 min.

Angular Momentum in Polar Coordinates
Central Forces 2023

assignment_ind Small White Board Question

30 min.

Magnetic Moment & Stern-Gerlach Experiments
Quantum Fundamentals 2023 (3 years)

Angular Momentum Spin Magnetic Moment Stern-Gerlach Experiments

Students consider the relation (1) between the angular momentum and magnetic moment for a current loop and (2) the force on a magnetic moment in an inhomogeneous magnetic field. Students make a (classical) prediction of the outcome of a Stern-Gerlach experiment.

assignment_ind Small White Board Question

5 min.

Angular Momentum
Central Forces 2023

face Lecture

5 min.

Central Forces Introduction Lecture Notes
Central Forces 2022

group Small Group Activity

10 min.

Survivor Outer Space: A kinesthetic approach to (re)viewing center-of-mass
Central Forces 2023 (3 years) A group of students, tethered together, are floating freely in outer space. Their task is to devise a method to reach a food cache some distance from their group.

group Small Group Activity

30 min.

Superposition States for a Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum hermitian operators probability superposition

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.

face Lecture

10 min.

Angular Momentum Commutation Relations: Lecture
Central Forces 2023 (3 years)

group Small Group Activity

30 min.

Applying the equipartition theorem
Contemporary Challenges 2021 (4 years)

equipartition theorem

Students count the quadratic degrees of freedom of a few toy molecules to predict their internal energy at temperature \(T\).

assignment Homework

Scattering
Central Forces 2023 (3 years)

Consider a very light particle of mass \(\mu\) scattering from a very heavy, stationary particle of mass \(M\). The force between the two particles is a repulsive Coulomb force \(\frac{k}{r^2}\). The impact parameter \(b\) in a scattering problem is defined to be the distance which would be the closest approach if there were no interaction (See Figure). The initial velocity (far from the scattering event) of the mass \(\mu\) is \(\vec v_0\). Answer the following questions about this situation in terms of \(k\), \(M\), \(\mu\), \(\vec v_0\), and \(b\). (It is not necessarily wise to answer these questions in order.)

  1. What is the initial angular momentum of the system?
  2. What is the initial total energy of the system?
  3. What is the distance of closest approach \(r_{\rm{min}}\) with the interaction?
  4. Sketch the effective potential.
  5. What is the angular momentum at \(r_{\rm{min}}\)?
  6. What is the total energy of the system at \(r_{\rm{min}}\)?
  7. What is the radial component of the velocity at \(r_{\rm{min}}\)?
  8. What is the tangential component of the velocity at \(r_{\rm{min}}\)?
  9. What is the value of the effective potential at \(r_{\rm{min}}\)?
  10. For what values of the initial total energy are there bound orbits?
  11. Using your results above, write a short essay describing this type of scattering problem, at a level appropriate to share with another Paradigm student.

group Small Group Activity

30 min.

Expectation Values for a Particle on a Ring
Central Forces 2023 (3 years)

central forces quantum mechanics eigenstates eigenvalues hermitian operators quantum measurements degeneracy expectation values time dependence

Quantum Ring Sequence

Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.

assignment Homework

Angular Momentum and Kinetic Energy in the Center of Mass
Central Forces 2023 (3 years)

(Messy algebra) Purpose: Convince yourself that the expressions for kinetic energy in original and center of mass coordinates are equivalent. The same for angular momentum.

Consider a system of two particles of mass \(m_1\) and \(m_2\).

  1. Show that the total kinetic energy of the system is the same as that of two “fictitious” particles: one of mass \(M=m_1+m_2\) moving with the velocity of the center of mass and one of mass \(\mu\) (the reduced mass) moving with the velocity of the relative position.
  2. Show that the total angular momentum of the system can similarly be decomposed into the angular momenta of these two fictitious particles.

computer Mathematica Activity

30 min.

Effective Potentials
Central Forces 2023 (3 years) Students use a pre-written Mathematica notebook or a Geogebra applet to explore how the shape of the effective potential function changes as the various parameters (angular momentum, force constant, reduced mass) are varied.

group Small Group Activity

30 min.

Energy and Angular Momentum for a Quantum Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.

face Lecture

5 min.

Unit Learning Outcomes: Classical Mechanics Orbits
Central Forces 2023 This handout lists Motivating Questions, Key Activities/Problems, Unit Learning Outcomes, and an Equation Sheet for a Unit on Classical Mechanics Orbits. It can be used both to introduce the unit and, even better, for review.

face Lecture

10 min.

Introduction to Central Forces
Central Forces 2023

group Small Group Activity

30 min.

Time Dependence for a Quantum Particle on a Ring Part 1
Theoretical Mechanics (6 years)

central forces quantum mechanics eigenstates eigenvalues angular momentum time dependence hermitian operators probability degeneracy quantum measurements

Quantum Ring Sequence

Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.

group Small Group Activity

60 min.

Raising and Lowering Operators for Spin
Central Forces 2023 (2 years)

group Small Group Activity

10 min.

Matrix Representation of Angular Momentum
Central Forces 2023 (2 years)

assignment Homework

Hockey
Central Forces 2023 (3 years)

(Synthesis Problem: Brings together several different concepts from this unit.) Use effective potential diagrams for other than \(1/r^2\) forces.

Consider the frictionless motion of a hockey puck of mass \(m\) on a perfectly circular bowl-shaped ice rink with radius \(a\). The central region of the bowl (\(r < 0.8a\)) is perfectly flat and the sides of the ice bowl smoothly rise to a height \(h\) at \(r = a\).

  1. Draw a sketch of the potential energy for this system. Set the zero of potential energy at the top of the sides of the bowl.
  2. Situation 1: the puck is initially moving radially outward from the exact center of the rink. What minimum velocity does the puck need to escape the rink?
  3. Situation 2: a stationary puck, at a distance \(\frac{a}{2}\) from the center of the rink, is hit in such a way that it's initial velocity \(\vec v_0\) is perpendicular to its position vector as measured from the center of the rink. What is the total energy of the puck immediately after it is struck?
  4. In situation 2, what is the angular momentum of the puck immediately after it is struck?
  5. Draw a sketch of the effective potential for situation 2.
  6. In situation 2, for what minimum value of \(\vec v_0\) does the puck just escape the rink?