format_list_numbered Sequence

Curvilinear Coordinate Sequence
The curvilinear coordinate sequence introduces cylindrical and spherical coordinates (including inconsistencies between physicists' and mathematicians' notational conventions) and the basis vectors adapted to these coordinate systems.

group Small Group Activity

30 min.

\(|\pm\rangle\) Forms an Orthonormal Basis
Quantum Fundamentals 2023 (3 years)

Cartesian Basis $S_z$ basis completeness normalization orthogonality basis

Completeness Relations

Student explore the properties of an orthonormal basis using the Cartesian and \(S_z\) bases as examples.

group Small Group Activity

10 min.

Using Tinker Toys to Represent Spin 1/2 Quantum Systems

spin 1/2 eigenstates quantum states

Arms Sequence for Complex Numbers and Quantum States

Students use Tinker Toys to represent each component in a two-state quantum spin system in all three standard bases (\(x\), \(y\), and \(z\)). Through a short series of instructor-led prompts, students explore the difference between overall phase (which does NOT change the state of the system) and relative phase (which does change the state of the system). This activity is optional in the Arms Sequence Arms Sequence for Complex Numbers and Quantum States.

group Small Group Activity

10 min.

Changing Spin Bases with a Completeness Relation
Quantum Fundamentals 2023 (3 years)

Completeness Relations Quantum States

Completeness Relations

Students work in small groups to use completeness relations to change the basis of quantum states.

group Small Group Activity

60 min.

Going from Spin States to Wavefunctions
Quantum Fundamentals 2023 (2 years)

Wavefunctions quantum states probability amplitude histograms matrix notation of quantum states Arms representation

Arms Sequence for Complex Numbers and Quantum States

Completeness Relations

Students review using the Arms representation to represent states for discrete quantum systems and connecting the Arms representation to histogram and matrix representation. The student then extend the Arms representation to begin exploring the continuous position basis.

accessibility_new Kinesthetic

10 min.

Curvilinear Basis Vectors
Static Fields 2023 (10 years)

symmetry curvilinear coordinate systems basis vectors

Curvilinear Coordinate Sequence

Students use their arms to depict (sequentially) the different cylindrical and spherical basis vectors at the location of their shoulder (seen in relation to a specified origin of coordinates: either a set of axes hung from the ceiling of the room or perhaps a piece of furniture or a particular corner of the room).

assignment Homework

Completeness Relation Change of Basis
change of basis spin half completeness relation dirac notation

Completeness Relations

Quantum Fundamentals 2023 (3 years)
  1. Given the polar basis kets written as a superposition of Cartesian kets \begin{eqnarray*} \left|{\hat{s}}\right\rangle &=& \cos\phi \left|{\hat{x}}\right\rangle + \sin\phi \left|{\hat{y}}\right\rangle \\ \left|{\hat{\phi}}\right\rangle &=& -\sin\phi \left|{\hat{x}}\right\rangle + \cos\phi \left|{\hat{y}}\right\rangle \end{eqnarray*}

    Find the following quantities: \[\left\langle {\hat{x}}\middle|{\hat{s}}\right\rangle ,\quad \left\langle {\hat{y}}\middle|{{\hat{s}}}\right\rangle ,\quad \left\langle {\hat{x}}\middle|{\hat{\phi}}\right\rangle ,\quad \left\langle {\hat{y}}\middle|{\hat{\phi}}\right\rangle \]

  2. Given a vector written in the polar basis \[\left|{\vec{v}}\right\rangle = a\left|{\hat{s}}\right\rangle + b\left|{\hat{\phi}}\right\rangle \] where \(a\) and \(b\) are known. Find coefficients \(c\) and \(d\) such that \[\left|{\vec{v}}\right\rangle = c\left|{\hat{x}}\right\rangle + d\left|{\hat{y}}\right\rangle \] Do this by using the completeness relation: \[\left|{\hat{x}}\right\rangle \left\langle {\hat{x}}\right| + \left|{\hat{y}}\right\rangle \left\langle {\hat{y}}\right| = 1\]
  3. Using a completeness relation, change the basis of the spin-1/2 state \[\left|{\Psi}\right\rangle = g\left|{+}\right\rangle + h\left|{-}\right\rangle \] into the \(S_y\) basis. In otherwords, find \(j\) and \(k\) such that \[\left|{\Psi}\right\rangle = j\left|{+}\right\rangle _y + k\left|{-}\right\rangle _y\]

assignment Homework

Frequency
Quantum Mechanics Time Evolution Spin Precession Expectation Value Bohr Frequency Quantum Fundamentals 2023 (3 years) Consider a two-state quantum system with a Hamiltonian \begin{equation} \hat{H}\doteq \begin{pmatrix} E_1&0\\ 0&E_2 \end{pmatrix} \end{equation} Another physical observable \(M\) is described by the operator \begin{equation} \hat{M}\doteq \begin{pmatrix} 0&c\\ c&0 \end{pmatrix} \end{equation} where \(c\) is real and positive. Let the initial state of the system be \(\left|{\psi(0)}\right\rangle =\left|{m_1}\right\rangle \), where \(\left|{m_1}\right\rangle \) is the eigenstate corresponding to the larger of the two possible eigenvalues of \(\hat{M}\). What is the frequency of oscillation of the expectation value of \(M\)? This frequency is the Bohr frequency.

group Small Group Activity

10 min.

Angular Momentum in Polar Coordinates
Central Forces 2023

group Small Group Activity

30 min.

Quantum Measurement Play
Quantum Fundamentals 2023 (2 years)

Quantum Measurement Projection Operators Spin-1/2

The instructor and students do a skit where students represent quantum states that are “measured” by the instructor resulting in a state collapse.

face Lecture

30 min.

Compare & Contrast Kets & Wavefunctions

Bra-Ket Notations Wavefunction Notation Completeness Relations Probability Probability Density

Completeness Relations

In this lecture, the instructor guides a discussion about translating between bra-ket notation and wavefunction notation for quantum systems.

assignment Homework

Dimensional Analysis of Kets
dirac notation dimensions probability completeness relations

Completeness Relations

  1. \(\left\langle {\Psi}\middle|{\Psi}\right\rangle =1\) Identify and discuss the dimensions of \(\left|{\Psi}\right\rangle \).
  2. For a spin \(\frac{1}{2}\) system, \(\left\langle {\Psi}\middle|{+}\right\rangle \left\langle {+}\middle|{\Psi}\right\rangle + \left\langle {\Psi}\middle|{-}\right\rangle \left\langle {-}\middle|{\Psi}\right\rangle =1\). Identify and discuss the dimensions of \(\left|{+}\right\rangle \) and \(\left|{-}\right\rangle \).
  3. In the position basis \(\int \left\langle {\Psi}\middle|{x}\right\rangle \left\langle {x}\middle|{\Psi}\right\rangle dx = 1\). Identify and discuss the dimesions of \(\left|{x}\right\rangle \).

keyboard Computational Activity

120 min.

Sinusoidal basis set
Computational Physics Lab II 2023 (2 years)

inner product wave function quantum mechanics particle in a box

Students compute inner products to expand a wave function in a sinusoidal basis set. This activity introduces the inner product for wave functions, and the idea of approximating a wave function using a finite set of basis functions.

accessibility_new Kinesthetic

10 min.

Spin 1/2 with Arms
Quantum Fundamentals 2023 (2 years)

Quantum State Vectors Complex Numbers Spin 1/2 Arms Representation

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, use their left arms to represent each component in a two-state quantum spin 1/2 system. Reinforces the idea that quantum states are complex valued vectors. Students make connections between Dirac, matrix, and Arms representation.

keyboard Computational Activity

120 min.

Position operator
Computational Physics Lab II 2022

quantum mechanics operator matrix element particle in a box eigenfunction

Students find matrix elements of the position operator \(\hat x\) in a sinusoidal basis. This allows them to express this operator as a matrix, which they can then numerically diagonalize and visualize the eigenfunctions.

group Small Group Activity

30 min.

Finding if \(S_{x}, \; S_{y}, \; and \; S_{z}\) Commute
Quantum Fundamentals 2023 (3 years)

assignment Homework

Matrix Elements and Completeness Relations

Completeness Relations

Quantum Fundamentals 2023 (3 years)

Writing an operator in matrix notation in its own basis is easy: it is diagonal with the eigenvalues on the diagonal.

What if I want to calculate the matrix elements using a different basis??

The eigenvalue equation tells me what happens when an operator acts on its own eigenstate. For example: \(\hat{S}_y\left|{\pm}\right\rangle _y=\pm\frac{\hbar}{2}\left|{\pm}\right\rangle _y\)

In Dirac bra-ket notation, to know what an operator does to a ket, I needs to write the ket in the basis that is the eigenstates of the operator (in order to use the eigenvalue equation.)

One way to do this to stick completeness relationships into the braket: \begin{eqnarray*} \left\langle {+}\right|\hat{S_y}\left|{+}\right\rangle = \left\langle {+}\right|(I)\hat{S_y}(I)\left|{+}\right\rangle \end{eqnarray*}

where \(I\) is the identity operator: \(I=\color{blue}{\left|{+}\right\rangle _{yy}\left\langle {+}\right|}\;+\;\color{blue}{\left|{-}\right\rangle _{yy}\left\langle {-}\right|}\). This effectively rewrite the \(\left|{+}\right\rangle \) in the \(\left|{\pm}\right\rangle _y\) basis.

Find the top row matrix elements of the operator \(\hat{S}_y\) in the \(S_z\) basis by inserting completeness relations into the brakets. (The answer is already on the Spins Reference Sheet, but I want you do demonstrate the calculation.)

accessibility_new Kinesthetic

10 min.

Using Arms to Represent Time Dependence in Spin 1/2 Systems
Quantum Fundamentals 2023 (2 years)

Arms Representation quantum states time dependence Spin 1/2

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, use their left arms to demonstrate time evolution in spin 1/2 quantum systems.

group Small Group Activity

30 min.

Electric Field Due to a Ring of Charge
Static Fields 2023 (8 years)

coulomb's law electric field charge ring symmetry integral power series superposition

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in small groups to use Coulomb's Law \[\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the electric field, \(\vec{E}(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(\vec{E}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

assignment Homework

Unknowns Spin-1/2 Brief
Quantum Fundamentals 2023 (3 years) With the Spins simulation set for a spin 1/2 system, measure the probabilities of all the possible spin components for each of the unknown initial states \(\left|{\psi_3}\right\rangle \) and \(\left|{\psi_4}\right\rangle \).
  1. Use your measured probabilities to find each of the unknown states as a linear superposition of the \(S_z\)-basis states \(\left|{+}\right\rangle \) and \(\left|{-}\right\rangle \).
  2. Articulate a Process: Write a set of general instructions that would allow another student in next year's class to find an unknown state from measured probabilities.
  3. Compare Theory with Experiment: Design an experiment that will allow you to test whether your prediction for each of the unknown states is correct. Describe your experiment here, clearly but succinctly, as if you were writing it up for a paper. Do the experiment and discuss your results.
  4. Make a Conceptual Connection: In general, can you determine a quantum state with spin-component probability measurements in only two spin-component-directions? Why or why not?