group Small Group Activity

30 min.

Vector Surface and Volume Elements
Static Fields 2023 (4 years)

Integration Sequence

Students use known algebraic expressions for vector line elements \(d\vec{r}\) to determine all simple vector area \(d\vec{A}\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.

This activity is identical to Scalar Surface and Volume Elements except uses a vector approach to find directed surface and volume elements.

group Small Group Activity

30 min.

Vector Differential--Curvilinear
Vector Calculus II 23 (11 years)

vector calculus coordinate systems curvilinear coordinates

Integration Sequence

In this small group activity, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in different coordinate systems (cartesian, cylindrical, spherical).

Use Vector Differential--Rectangular as an introduction. This activity can be done simultaneously with Pineapples and Pumpkins where students or the instructor cut volume elements out of pineapples and/or pumpkins to show the geometry.

assignment Homework

Fourier Series for the Ground State of a Particle-in-a-Box.
Oscillations and Waves 2023 (2 years) Treat the ground state of a quantum particle-in-a-box as a periodic function.
  • Set up the integrals for the Fourier series for this state.

  • Which terms will have the largest coefficients? Explain briefly.

  • Are there any coefficients that you know will be zero? Explain briefly.

  • Using the technology of your choice or by hand, calculate the four largest coefficients. With screen shots or otherwise, show your work.

  • Using the technology of your choice, plot the ground state and your approximation on the same axes.

group Small Group Activity

30 min.

Energy and Angular Momentum for a Quantum Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.

group Small Group Activity

30 min.

Time Dependence for a Quantum Particle on a Ring Part 1
Theoretical Mechanics (6 years)

central forces quantum mechanics eigenstates eigenvalues angular momentum time dependence hermitian operators probability degeneracy quantum measurements

Quantum Ring Sequence

Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.

group Small Group Activity

30 min.

Wavefunctions on a Quantum Ring
Central Forces 2023 (2 years)